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Abstract

Air pollution represents a significant global challenge, and the precise identification and tracking of 
pollution sources is crucial for effective pollution control and management. Unmanned aerial vehicles 
(UAVs) possess inherent advantages due to their portability and the ability to integrate various sensors 
on demand, making them an ideal tool for this purpose. This study aims to develop an efficient multi-
UAV system for pollution source tracking, termed a Multi-UAV Cluster Traceability Distributed 
(MCTD) control structure. The MCTD framework facilitates collaboration among multiple UAVs, 
expanding the coverage area and monitoring duration. Complementing this structure is the Dynamic 
Suppression Psychology (DSP) algorithm, inspired by the social impact theory, which simulates social 
interactions among UAVs. Each UAV adjusts its behavior based on the influence of other UAVs in the 
cluster, optimizing the tracking strategy. This approach enhances multi-UAV coordination, enabling 
more effective tracking and localization of airborne pollutants and overcoming single-UAV limitations 
in terms of coverage and duration. Experimental results show that tracking success rates significantly 
increase with the number of UAVs, reaching a saturation point at approximately 15 UAVs, with an 
approximate success rate of 85%. The MCTD-DSP system developed in this study effectively improves 
pollution source tracking efficiency, offering promising prospects for its application. 

Recommendations for Resource Managers: 
– A multi-UAV cluster traceability distributed (MCTD) control structure is established. 
– A dynamic suppression psychological algorithm for multi-UAV based on the social impact theory
    is proposed. 
– The increase in the number of UAVs can effectively improve the traceability efficiency.
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Introduction

Air pollution is a worldwide concern due to its 
hazardous effects on human health [1, 2]. Tracing and 
positioning the source of airborne pollutants is necessary 
and crucial for both pollution control and management 
and, subsequently, improving air quality and ensuring 
human health [3]. Conventional air pollution monitoring 
facilities are mainly fixed monitoring stations [4]. In the 
recent decade, vehicle-mounted monitoring stations and 
wireless sensors for airborne pollutants have attracted 
the attention of researchers and administrators [5, 
6], who can both monitor air quality and estimate the 
geographical location of pollution sources based on 
the site of the stations and the concentration gradients 
of pollutants. Chiang et al. established a vehicle-based 
monitoring system installed on vehicles traveling 
on streets to collect real-time data, recording PM2.5 
concentrations in areas surrounding people’s residences 
[7]. Li et al. developed an air pollution tracking model 
using a wireless sensor system (WSS) that utilizes 
sensor nodes and a fixed system to track air quality 
[8]. In addition, Bhatti et al. studied the current status 
of particulate matter of air pollution (PM2.5) in the city 
of Lahore, Pakistan, analyzed its influencing factors 
and predicted the future PM2.5 concentrations using the 
SARIMA model [9]. However, it is urgent to develop a 
more effective and practical monitoring system that can 
realize the traceability and location of pollution sources 
[10].

In recent years, remote sensing technology has 
gradually been applied to various phenomena and fields, 
such as the weather, geology, disaster prediction, and 
urban planning [11]. Unmanned aerial vehicles (UAVs) 
have been widely adopted in various fields, such as 
military [12], earth sciences [13, 14], natural disaster 
warning [15], and video surveillance [16, 17], due to 
their flexibility and mobility[18, 19]. The application 
of UAVs equipped with gas sensors for air pollutant 
monitoring is snowballing [20, 21]. For instance, Li et al. 
used a lightweight UAV with a tethered balloon platform 
to investigate the three-dimensional distribution of 
ozone and particulate matter (PM2.5) concentrations 
in the lower troposphere at 1,000 meters at a localized 
coastal area in Shanghai, China [22].

To date, few researchers have used UAVs to trace 
air pollution sources. Yunagicela-naula et al. utilized 
unmanned aerial vehicles (UAVs) equipped with sensors 
to detect pollutant concentrations for source tracing in 
simulated high-turbulence pollution environments [23]. 
Castro et al. designed a UAV system for locating gas 
sources in windless indoor environments [24]. Le et al. 
focused on using single and multiple drones to detect 
pollution sources in industrial parks [25]. The methods 
of tracing pollution sources can mainly be divided into 
two types: source traceability in a probabilistic context 
and source traceability based on the concentration 
gradient. Most probabilistic source tracing methods 
are based on Bayesian inference and its optimization 

methods, mainly relying on electronic nose sensors to 
identify the pollutants but not actively tracing the source 
[26, 27] due to their design and functionality. The 
primary role of electronic nose sensors is to detect and 
analyze the gas composition in the environment rather 
than actively locating the source of pollution. The data 
provided by the sensors is used as input for establishing 
probability models and conducting Bayesian inference, 
helping researchers understand how pollutants diffuse 
and the possible direction or region they may originate 
from. Gradient-based methods can more directly locate 
the source by relying on the signal emitted by the source 
or the variation of physical characteristics with distance. 
Thus, it is essential to conduct the pollution source 
tracing based on the concentration gradients, which 
can actively implement the task [28]. Yungaicela-Naula 
et al. proposed an algorithm for locating air pollution 
sources using Unmanned Aerial Vehicles (UAVs) [29], 
and the algorithm combined a gradient-based search 
with a probabilistic approach to locate pollution sources. 
The design of the gradient-based search component 
was based on a simulated annealing metaheuristic and 
allowed tracking of the pollutant plume.

Source localization methods combined with swarm 
intelligence optimization algorithms are the most 
commonly used methods for active source tracking 
in the most current research. Saadaoui et al. proposed 
a probabilistic search strategy based on the Local 
Particle Swarm Optimization (LoPSO) method [30]. 
In this approach, each particle learns from the unique 
best experience generated by the new search strategy to 
optimize the unmanned aerial vehicle’s search path. The 
optimization strategy enhances the collaborative search 
of UAVs, improves the efficiency of earthquake source 
detection, and reduces the overall search time. Jiang 
et al. proposed a new algorithm called Fuzzy Control 
Traceability (FCT) to track the odor plume [31]. The 
algorithm combined the characteristics of UAVs and 
fuzzy control to design a controller based on the actual 
environment of UAVs. The fuzzy controller fuzzily 
processed the input gas concentration information, 
established fuzzy control rules, and outputted the 
turning angle and movement length according to the 
rules, thus achieving intelligent tracking of the odor 
plume by the UAV. Liu et al. addressed the problems of 
lower UAV search efficiency due to unplanned search 
routes, possible local extrema and internal collisions, the 
inability to locate the odor source quickly, etc. [32]. 

The Particle Swarm Optimization (PSO) 
algorithm possesses simplicity, fast convergence, 
robustness, distributed collaboration, and adaptability 
characteristics. It can simulate collective behavior, 
support parallel computing, and effectively avoid 
local optima. Gunawardena et al. presented a method 
for locating a pollutant source in complex urban 
environments using the particle swarm optimization 
(PSO) algorithm. This method applies PSO to unmanned 
aerial vehicles (UAVs) and uses the QUIC model to 
simulate pollution plumes in urban environments [33]. 
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Nayeem et al. analyzed various inertia-weight PSO 
algorithms for enhancing particle diversity and proposed 
an adaptive time-varying inertia-weight parameter for 
their previously proposed nPSO algorithm for UAV path 
planning, comparing its performance with other inertia-
weight strategies [34]. Therefore, this paper proposed an 
improved particle swarm optimization (IPSO) algorithm 
that combines PSO with a sawtooth algorithm to pre-
plan the search routes and improve the efficiency of 
UAV search plumes. 

UAVs with environmental sensors can be highly 
efficient in collecting environmental information and 
analyzing the time-dependent variation in pollutant 
concentrations. However, there are still some challenges 
in using UAVs for tracing air pollution sources, such as 
detecting large-scale air pollution at the limited flying 
time of UAVs and measuring the dynamic change of 
atmospheric pollutant concentration using a global static 
optimal allocation of traceability. Thus, this study aims 
to establish an effective Multi-UAV Cluster Traceability 
Distributed (MCTD) control structure to solve the 
above-mentioned problems. Meanwhile, a dynamic 
suppression psychological (DSP) algorithm for multi-
UAV inspired by the social impact theory was proposed. 

Finally, a high success rate of source tracing for target 
pollutants (over 80%) was achieved. Unfortunately, only 
stationary sources of pollution were considered in this 
paper, not moving sources. Based on the research on 
the traceability of stationary pollution sources, we will 
think about how to apply the algorithms proposed in this 
paper to the traceability of moving sources in the future.

Materials and Methods

Multi-UAV Cluster Traceability Distributed 
(MCTD) Control Structure

The MCTD control structure is mainly composed 
of a UAV ground control station and a set of UAVs, as 
shown in Fig. 1a) and 1b). Fig. 1c) shows the specific 
communication process. Moreover, the innovation of the 
MCTD control structure is that UAVs in the same group 
can exchange monitoring messages of air pollutant 
concentrations from other groups of UAVs through the 
ground control station. This is crucial for determining 
the highest point for measuring the global concentration 
of the pollutant.

Fig. 1. The design of the Multi-UAV Cluster Traceability Distributed (MCTD) control structure created in this study.
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The ground control station for unmanned aerial 
vehicles (UAVs) consists of a remote controller and 
a data transmission module, as depicted in Fig. 1a).  
It is responsible for remote control and the sending/
receiving of data. Each UAV is equipped with a tracking 
control module, a data transmission module, a GPS 
module, a battery, and a gas sensor, as depicted in Fig. 
1b). These modules work together to collect information 
such as air pollutant concentrations, environmental 
parameters, and weather conditions. The ground control 
station establishes a bidirectional communication 
link with the UAVs to ensure real-time information 
exchange. Firstly, based on the nature and requirements 
of the mission, the ground control station groups the 
UAV fleet and assigns a dynamic leader of the UAV 
from a distributed control structure to each group. 
The dynamic leader of the UAV, acting as the leader 
of the group, collects and consolidates environmental 
information from the UAVs within the group through 
the data transmission module. It then transmits this 
information to the ground control station, thus avoiding 
redundant information transmission and reducing the 
information processing burden on the ground control 
station. Secondly, the dynamic leader UAV can also 
send cooperative search tasks and other information to 
the UAV fleet through the data transmission module, 
as shown by the lines of UAV-Ground control station 
link and Ground control station-UAV link in Fig. 1c). 
Each group operates independently under the guidance 
of the dynamic leader UAV, and other UAVs within the 
group can receive data on air pollutant concentrations 
and external environmental information from the 
dynamic leader UAV. In applying the Particle Swarm 
Optimization (PSO) algorithm, each UAV is considered 
an agent (particle) in the algorithm. The UAVs within 
the same group exchange information through wireless 
communication to search for the optimal solution within 
the search area, such as the location of pollutant sources 
or the best flight path, as illustrated by the lines of  
UAV-UAV link in Fig. 1c). This approach allows  
the UAV fleet to intelligently adapt to environmental 
changes and optimize search behavior. 

Dynamic Suppression Psychological 
Algorithm of Multi-UAV

The basic PSO (particle swarm optimization) 
algorithm is based on bird foraging and simulates 
a bionic optimization algorithm for social behavior 
between groups in nature. Each particle has its position 
and velocity and an optimal value determined by the 
optimization function. Each particle knows its optimal 
position and the optimal position of the whole group, 
and in each iteration, the particle is updated by tracking 
the two optimal positions until the optimal solution is 
found. The particles update their position and velocity 
by the following Equation:

 1 1 2 2( 1) ( ) ( ( )) ( ( ))i i best i best iv t wv t c P x t c G x tβ β+ = + ⋅ − + ⋅ −  

 1 1 2 2( 1) ( ) ( ( )) ( ( ))i i best i best iv t wv t c P x t c G x tβ β+ = + ⋅ − + ⋅ −  (1)

 ( 1) ( ) ( 1)i i ix t x t v t+ = + +  (2)

where w is the inertia weight, c1 and c2 are the 
“cognitive learning factor” and “social learning factor”, 
respectively, which are used to adjust the weight of 
the particle’s own experience and the group’s social 
experience in its movement, β1 and β2 are random 
numbers from 0 to 1, Pbest is the individual historical 
optimal position, and Gbest is the global optimal  
position.

The first part of Equation (1) is the velocity of the 
particle in its last iteration; the second part, called the 
“cognitive” part, represents the effect of the particle’s 
state on its velocity; and the third part, the “social” part, 
represents the sharing of information between particles 
and reflects the effect of other particles in the population 
on a single body.

The basic PSO algorithm is prone to falling into 
local extrema for functions with multiple local extrema. 
It often fails to obtain accurate results due to the lack 
of cooperation with sophisticated search methods. 
Although the PSO algorithm has been applied and 
improved in existing research on pollution source 
location [30, 32], it still has shortcomings. Therefore, 
this paper innovatively proposed a multi-UAV dynamic 
suppression psychological (DSP) algorithm inspired by 
social influence theory.

This paper discusses the theory of social impact, 
which is a widely observed social psychological 
phenomenon. It describes how individuals’ behavior 
and attitudes tend to align with prevailing social 
trends under the influence of social pressures. This 
phenomenon includes obedience, conformity, social 
facilitation, social loafing, group polarization, and 
collective thinking. 

The dynamic suppression psychological (DSP) 
algorithm of multi-UAV is inspired by the social impact 
theory based on the basic PSO algorithms [35]. This 
theory considers the social influence within a given 
social environment, which depends on factors such as 
quantity, intensity, and immediacy. In the process of 
tracking air pollution, the interactions among multiple 
UAVs resemble interactions within a social group. The 
concept of dynamic suppression is reflected in multi-
UAV tasks, where each UAV’s actions are influenced by 
its own state and the states of other UAVs. When a task 
performer falls behind other team members, they are 
suppressed to take proactive measures and catch up with 
the team’s progress. 

Compared with the traditional PSO algorithm, 
this paper introduced the maximum contaminant 3D 
spatial location within the dynamic radius of the UAV 
in the Multi-UAV Cluster Tracking Distributed (MCTD) 
control structure, which fits the actual UAV application 
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(4) Initialize the position, velocity, historical optimal 
position, and global optimal position for each UAV.

(5) Set the inertia weight, cognitive, social, and 
dynamic learning factors.

(6) Set the types of UAVs (e.g., crew and dynamic 
leaders).

(7) Set the communication radius and obstacle 
avoidance distance for the UAVs.

Step 2: Iterative Search
When the number of iterations is less than the 

maximum number of iterations, perform the following 
steps:

(1) Calculate the impact value. 
For each UAV, calculate the influence value SOIij

k(t) 
from other UAVs using Equation (5).

(2) Calculate the state function. 
For each UAV, calculate its state function Gi(t) using 

Equation (8).
(3) Calculate suppression psychological function.
For each UAV, calculate its suppression psychological 

function Ji
k(t) using Equation (10).

(4) Determine the dynamic radius. 
For each UAV, calculate its dynamic radius based on 

its suppression psychological function and the dynamic 
radius Equation (11).

(5) Search for optimal positions.
For each UAV, search for other UAVs and the 

position with the highest pollutant concentration within 
its dynamic radius.

Update the velocity and position of the UAV using 
Equations (3) and (4). 

(6) Update historical and global optimal positions.

scenario and can improve the algorithm performance. 
The analysis is as follows: Firstly, each dynamic UAV 
group leader is equivalent to a small ground control 
station, which compares the concentration of pollutants 
detected by the UAV members (crew) in the group to 
obtain the maximum concentration in the dynamic 
range, reducing the amount of data processing by the 
ground control station. Secondly, based on the traditional 
PSO algorithm, after introducing the 3D spatial location 
of the maximum pollutant in the dynamic range, each 
UAV in the group will have a certain probability of 
flying to the location of the maximum pollutant in the 
dynamic range, which can, to a certain extent, improve 
the potential of circumventing the possibility of falling 
into the local optimum, thus improving its success rate 
of tracing the source of pollution. The DSP algorithm is 
associated with the function of suppression psychology 
and is primarily influenced by the status functions 
of other UAVs within the group and the UAV’s own 
status function. As the psychological suppression 
value of UAVs increases, the dynamic radius of UAVs 
can expand, enriching the environmental information 
within the dynamic radius. These factors can enhance 
the traceability of atmospheric pollution sources. Fig. 2 
shows the overall flow of the collaborative multi-aircraft 
odor source tracing algorithm based on the repressed 
mental function.

DSP algorithm steps are:
Step 1: Parameter Initialization
(1) Set the maximum number of iterations.
(2) Set the size of the search area.
(3) Set the maximum number of iterations.

Fig. 2. Flowchart of a collaborative multi-vehicle odor source tracing algorithm based on repressed mental functions.
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If the current position of the UAV has a higher 
pollutant concentration than its historical optimal 
position, update the historical optimal position.

If the current position of the UAV has a higher 
pollutant concentration than the global optimal position, 
update the global optimal position. 

(7) Increase the number of iterations.
Increment the iteration count by 1, then jump  

to Step 2.
Step 3: End of Algorithm
The algorithm ends when the number of iterations 

reaches the maximum number of iterations.
The pseudocode of the DSP algorithm is:

The Theoretical Basis of the DSP-UAV  
Algorithm

The process of using UAVs to trace air pollution 
sources can be divided into three phases: (I) searching 
for contaminant plumes, (II) tracing the source of 
the plume, and (III) locating the air pollution sources. 
We define S as the total search area, and Sk represents 
the area where the k-th group UAV searches for the 

contaminant plume. The relationship between S and Sk 
can be represented as S = ∑n

k=1Sk. Stationi(t) = (xi(t), yi(t), 
zi(t))

T denotes the spatial location of the i-th UAV at time 
t. As for the i-th UAV, the relationship between the next 
position and the current position can be described by 
Equation (3):

 
(3)

where x
i(t), yi(t), and z

i(t) (i = 1,2,3…n) are the locations 
of the i–th UAV in three–dimensional space at time t, 
and n represents the number of UAVs, respectively.  
In the same way, where xi(t+1), yi(t+1), zi(t+1),  
(i = 1,2,3…n) are the position statuses of the i–th UAV 
in three–dimensional inertial space at time t+1. vi(t+1)  
represents the velocity vector of the i-th UAV at time 
t+1, which is influenced by many factors, which will 
be discussed in more detail later in the article. φi is the 
elevation of vi(t+1) into the xy plane. ∂i is the azimuth at 
which the velocity projection of the xy plane continues 
to project on the x-axis, as shown in Fig. 3.

The vi(t+1) determination process is influenced by 
four aspects: (I) the inertial flying speed of the UAV, 
vi(t) ; (II) the historical optimal position (HOP) of the 
concentration detected during the UAV traceability 
process; (III) the global optimal position (GOP) of the 
pollutant concentration monitored by the UAV swarm; 
(IV) the dynamic optimal position (DOP) within 
the dynamic monitoring radius. It is worth noting 
that parameters (I)(II)(III) are the parameters in the 
basic PSO algorithm, but parameter (IV) has not been 
considered before and is, for the first time, included 
in the algorithm in this study. The velocity motion 
Equation of UAV is expressed as follows:

  (4)

where w is the inertia weight, k1 and k2 are the cognitive and 
social learning factors in the basic PSO algorithm, and k3 is the 
dynamic in-domain learning factor, ri(t)~U(0,1), j = 1, 2, 3, 
and rj(t) represents random numbers ranging from 0 to 1.  
The setting of r1, r2, and r3 increases the randomness of search 
directions and the diversity of algorithms in the cognitive, 
social, and dynamic domains. w×(vix(t), viy(t), viz(t))

T is the 
inertial flying velocity of the i-th UAV at time t and (vix(t+1), 
viy(t+1), viz(t+1))T is the velocity of the i-th UAV at time t+1. 
(xi(t), yi(t), zi(t))

T is the position status of the i-th UAV at time t. 
(X1(t), Y1(t), Z1(t))

T is the historical optimal position of the 
large pollutant concentration during the UAV traceability 
process before time t. (X2(t), Y2(t), Z2(t))

T represents the global 
optimal position of the pollutant concentration monitored by 

DSP algorithm:

1: Parameter initialization

2: While (the maximum number of iterations is not 
reached) do

3: For each UAV do

4:
Calculate the influence value SOIij

k(t) of the i-th 
UAV on the j-th UAV of the k-th group at time t by 

Equation (5).

5: End for

6: For each UAV do

7: Calculate the state function Gi(t) of the i-th UAV at 
time t by Equation (8).

8: End for

9: For each UAV do

10: Calculate the suppression psychological function 
Ji

k(t) of the i-th UAV at time t by Equation (10).

11: End for

12: The UAV dynamic radius size was determined by 
Equation (11).

13: Search for UAVs within the dynamic radius at this 
time.

14:
Search the UAV position for the highest 

concentration point within the dynamic radius at this 
time.

15:
The highest concentration point information was 
obtained, and the speed position was updated by 

Equations (3) and (4).

16: End while
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the UAV swarm at time t. (X3(t), Y3(t), Z3(t))
T represents the 

three-dimensional spatial position of the maximum pollutant 
concentration of the nearest UAV within the dynamic radius. 
This study marks the dynamic radius as R(t), which changes 

with time. The iteration of the UAV’s step length with time is 
shown in Fig. 4.

There are three radii in Fig. 4a): Rmax represents 
the maximum communication radius between a UAV 

Fig. 3. Schematic diagram of the UAV position change.

Fig. 4. The iteration of the UAV’s step length.
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and the adjacent UAV; Rmin represents the shortest 
distance between UAVs to avoid a collision; and R(t) 
represents the dynamic radius, which is influenced 
by the suppression psychological function that will be 
introduced in the later section of the article. In Fig. 4b), 
GOP of the UAV is the global pollutant concentration 
optimal position for the UAV swarm, the position of 
the HOP UAV is the maximum historical pollutant 
concentration position of The Current Tracking UAV, 
and DOP of the UAV represents the dynamic optimal 
position within the dynamic radius R(t). Moreover,  
Fig. 4c) and 4d) represent the process of the velocity 
vector synthesis, and the light-colored dot that the light-
colored arrow points to is the position of The Current 
Tracking UAV at time t+1. With the iteration of the 
UAV’s step length, the concentration of air pollutants 
traced by the UAV gradually increases until it traces the 
source of the atmospheric pollutant.

 Calculation of Suppression 
Psychological Function

As shown above, DOP of the UAV in Fig. 4 is related 
to the dynamic radius R(t). In this paper, we introduce 
the suppression psychological function to preferably 
study the UAV position update. The calculation of 
the dynamic radius R(t) depends on the suppression 
psychological function, which mainly considers two 
aspects: the state function of multiple UAVs in the group 
and the state function of the UAV itself. 

The State Function of Multiple UAVs  
in the Group

When the UAV searches for pollution plumes in 
three-dimensional space, the influence of multiple 
UAVs in the group on this UAV is mainly considered 
from the aspects of UAV number, rank, and distance. 
In the MCTD control structure designed in this study 
(Fig. 1), there are two UAV types: (I) UAV crew and (II) 
dynamic UAV leaders. Thus, these different UAV types 
have various factors of influence (FOI) for the UAV in 
the group. SOI represents the influence value between 
two particular UAVs, and VOF is a matrix consisting 
of SOI that measures the degree of mutual influence 
between UAVs. The value of the influence matrix  
VOF = (SOIij)n×n is introduced as follows: the VOF 
between the i-th UAV and the j-th UAV, then SOIij = 0, 
i = n-1 represents the dynamic UAV leader, and the 
elements SOIij of the matrix VOF are defined by:

(5)

where n represents the number of UAVs in the k-th 
group, k represents the number of the UAV group. 

SOIij
k(t)  represents the influence value of the i-th 

UAV on the j-th UAV in the k-th group at time t. Ci
k(t) 

represents the concentration value detected by the i-th 
UAV crew (mg/L). Ck

n–1(t)  represents the concentration 
value detected by the dynamic UAV leader (mg/L). FOI1 
and FOI2 represent the factor of influence of the UAV 
crew and the factor of influence of the dynamic UAV 
leader, respectively. Dij

k is the distance between the 
i-th UAV and the j-th UAV in the k-th group. α is the 
constant factor. 

Then, the total VOF value received by the i-th UAV 
in the k-th group at time t is as follows:

 TSOIi
k(t) = ∑j=1

n-1SOIij
k(t), j = 1,2,3,…n-1 (6)

where TSOIi
k(t) is the total VOF value of the i-th UAV. 

The greater the value of influence (TSOIi
k), the greater 

the suppression psychology of the UAV created. TSOI is 
the total VOF value the UAV receives at a given moment, 
obtained by summing the SOI of the other team UAVs.

The State Function of the UAV

Besides considering the influence of other UAVs 
in the group, the UAV’s state function should also be 
evaluated. The state function of the UAV itself is mainly 
considered from the flight distance and remaining 
electricity. Because the total electric power of each 
UAV in the group is different, the remaining battery 
power (or charge level) cannot be estimated based on 
the flight distance. Therefore, the flight distance and 
the remaining battery power of the UAV should be 
considered separately. In order to simplify the model 
parameters, the relationship between the flight time 
of the UAV and the power is set as a simple linear 
relationship by the following Equation:

  (7)

where a and b are constant coefficients. 
The state function of the UAV is described by the 

following Equation:

  (8)

where Gi(t) is the state function of the i-th UAV at time 
t. Ei(t) is the remaining battery power of the i-th UAV,  
Li(t) is the flight distance of the i-th UAV at time t, and β 
is the constant coefficient. The purpose of setting β is to 
prevent the denominator, also called the flight distance, 
from being zero when t = 0.

The Determination of Suppression 
Psychological Function

Considering the difference in dimension between the 
state function of multiple UAVs (TSOIi(t)) and the state 
function of the UAV (Gi(t)), the final result of suppression 
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psychology will deviate. Therefore, the range transform 
method is adopted to eliminate dimension so that  
the result is more consistent with reality:

  (9)

where  is the total VOF value of the i-th UAV 
at time t after range transformation,  is the value of 
the i-th UAV state function after range transformation, 
min(TSOIk(t)) and max(TSOIk(t)) represent the minimum 
and maximum VOF value of the k-th group at time t, 
respectively, and max(Gk(t)) and min(Gk(t))  represent the 
minimum and maximum UAV state function in the k-th 
group at time t, respectively.

Finally, the Equation of the suppression psychological 
function calculation is as follows:

  (10)

where Ji
k(t) is the suppression psychological function 

of the i-th UAV at time t, and w1 and w2 are weight 
coefficients.

The Relationship between Suppression 
Psychological Function and Dynamic Radius

When the “suppression” psychology of the UAV is 
high, it will expand the dynamic radius to obtain the 
plume information of the UAV in a larger field, adjust its 
next flight direction, and obtain high-value plume points 
with a higher probability. The relationship between the 
suppression psychological function and the dynamic 
radius is as follows:

  (11)

where Ji
k(t) is the suppression psychological function 

of the i-th UAV, γ and ζ are constant coefficients, and 
γ>1 and ρ are the forgetting factors of UAV. The latter 
parameter is included to prevent the UAV from getting 
trapped in the local optimum within the search area. 
Rand is a random number, rand ∈[0, 1]. To better 
understand the behavior and performance of UVAs, 
random numbers are introduced in the algorithm to 
simulate the forgetting factor of each UAV at different 
times. The purpose is to examine how UVAs adjust their 
behavior based on their forgetting factor at different time 
points, such as changing search strategies or updating 
targets. Each UVA has a different forgetting state, and 
introducing random numbers can simulate the forgetting 
factor of each UVA at different times, thereby improving 
the performance and adaptability of the MCTD-DSP 
system.

Results and Discussion

This paper builds a three-dimensional pollution 
source concentration field to verify the accuracy and 
convergence speed of the algorithm for traceability. 
To validate the DSP-UAV algorithm, we run several 
simulations, implemented in the MATLAB simulation 
tool, with different configurations such as the value of 
k3, the number of UAVs, and the wind speeds.

Construction of the Pollution Source Field

The Gaussian pollutant diffusion model is a practical 
and straightforward atmospheric diffusion model that can 
satisfy the normal distribution of pollutant concentration 
in uniform and steady atmospheric turbulence.  

Fig. 5. Pollutant diffusion concentration map.
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In this study, the Gaussian pollutant diffusion model 
was used to establish the pollutant source diffusion 
concentration field using the MATLAB programming 
language, using sulfur dioxide (SO2) as a model 
pollutant. 

The pollution source diffusion concentration field 
included multiple local optimal concentration values, 
while SO2‘s diffusion strength concentration was  
3671.6 mg/L (the position of the five-pointed star  
in Fig. 5).

Analysis of the DSP-UAV Algorithm

The parameters involved in the algorithm in this 
paper are the maximum speed of the UAV, the wind 
speeds, the number of UAVs, the minimum and 
maximum values of the dynamic radius, the four 
constant coefficients (w, k1, k2, k3), and the value of the 
psychological effect of repression. In addition, the entire 
contaminated area was set at 100 km×16 km to design 
the boundary of the simulation. These parameters 
were set with reference to the relevant parameters  
in the UAV traceability platform built by this group and 
in the paper, and the maximum speed of the UAV was 
set at 8 m/s.

The Impact of k3 and Number of UAVs on 
the Success Rate of Traceability

In the analysis of the DSP-UAV algorithm, the 
simulation parameters of UAVs and the pollution source 
were fixed, as presented in Table 1. The distance between 
UAVs must exceed the minimum communication radius 
to ensure collision avoidance. Dynamic leaders can 
also monitor the distances between UAVs and issue 
instructions, if necessary, to adjust their flight direction 
or speed to avoid collisions. It is worth noting that the 
value of k3 represents the importance of information in 
the dynamic radius and suppression of psychological 
function. When k3=0, the DSP-UAV algorithm is 
equivalent to the particle swarm optimization algorithm 
(PSO), which means the information within the dynamic 
radius is zero. Using different k3 values, 100 multi-
UAV numerical simulations in the pollutant diffusion 
concentration map were performed in MATLAB, and 
the relationship between the number of UAVs and the 
success rate of traceability was determined (Fig. 6).

As the number of UAVs increased, the search area of 
the UAV group expanded, and the success rate of multi-
UAV traceability to air pollution sources gradually 
increased (Fig. 6). When the number of multi-UAVs 
increased from 5 to 15, the success rate of multi-UAV 
traceability quickly increased, reaching the maximum 
of 85%. However, when the number of multi-UAVs 
was higher than 15, multi-UAVs were more prone to 
communication confusion and collision problems, 
resulting in a stable success rate of 85% for multi-UAV 
tracking, which cannot be improved further. In addition, 
when the number of UAVs was less than 15, the k3 value 

positively influenced the increased rate of the multi-UAV 
traceability success rate. However, when the number of 
multi-UAVs was greater than 15, the value of k3 did not 
influence the traceability success rate of multi-UAVs. 

Compared to the PSO algorithm, the DSP algorithm 
introduces the dynamic in-domain learning factor k3. 
This factor allows UAVs, during the process of tracking 
pollution sources, to be influenced by the state functions 
of other UAVs in the swarm and their own individual 
state functions. With an increase in the psychological 
inhibition value of UAVs, the dynamic radius of UAVs 
expands, enriching environmental information within 
the dynamic radius. Moreover, each UAV in each 
group possesses a certain probability of flying towards 
the maximum pollutant location within the dynamic 
range. The DSP algorithm, to some extent, enhances the 
likelihood of avoiding local optima, thereby improving 
the success rate of retracing pollutant sources. All these 
aspects contribute to enhancing the convergence and 
success rates of UAV search operations. The comparison 
of the k3>0 DSP-UAV algorithm with the PSO algorithm 
(Fig. 6) allowed the following conclusions to be drawn: 
When the number of UAVs is less than 15, the PSO 
algorithm has a lower success rate than the k3>0 DSP-
UAV algorithm; when the number of UAVs is greater 
than 15, the achievement rate of the PSO algorithm is 
similar to that of the DSP-UAV algorithm.

Fig. 6. The relationship between the number of UAVs  
and the success rate of traceability.

Table 1. Simulation parameters.

Parameters Value

Search area 16 km×100 km

Max velocity of UAV 8 m/s

Number of UAVs 5-30

Longest communication radius (Rmax) 700 m

Minimum communication radius (Rmin) 10 m
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The Impact of Wind Speed  
on the Success Rate of Traceability

The success rates of at least one UAV locating and 
tracking the pollution source were further compared 
under different wind speeds using the PSO and DSP-
UAV algorithms with 15 UAVs. The success rate of 
tracking was calculated by dividing the number of 
successful tracking attempts by the total number of 
attempts within a specific time frame (Fig. 7). 

Fig. 7 shows that at lower wind speeds, the 
pollution sources did not spread widely, and the path 
formed by diffusion was relatively short, so the multi-
UAV could not locate the pollution sources quickly 
along the diffusion path. Therefore, the success rate of 
multi-UAVs in tracking the pollution sources was low. 
With the increase in wind speed, the success rates of 
both PSO and DSP-UAV algorithms for traceability 

were above 80%. When the wind speed was 2 m/s, 
the most significant difference in traceability success 
rate between PSO and DSP-UAV algorithms was 9%.  
The wind speeds were higher at this time, and the 
diffusion paths of the pollution sources were easily 
blown around, affecting the diffusion of the pollution 
sources. The multi-UAVs were easily caught in the 
local optima and increased the multi-UAV tracking 
time, which would cause the multi-UAV swarm not 
to successfully locate the pollution sources after the 
iteration time was up, and the success rate of tracking 
decreased. When the wind speed was 0.25, 0.50, 1.25, 
1.50, or 2.00 m/s, the success rate of the DSP algorithm 
was greater than that of the PSO algorithm; when the 
wind speed was 0.75, 1.00, or 1.75 m/s, the success rate 
of the PSO algorithm was 2%, 1%, and 2% higher than 
that of the DSP algorithm.

The Impact of k3 on the Convergence Speed

The relevant coefficients, k1 and k2, are the coefficients 
in front of the individual optimum and the population 
optimum of the primary particle swarm algorithm, 
which have already been studied in the paper and are 
not considered for analysis in this paper [30]. Instead, 
k3 is the coefficient preceding the three-dimensional 
spatial location of the maximum pollutant concentration 
within the dynamic radius for a newly proposed part. 
Therefore, the effect of k3 on the convergence rate was 
explored in this paper.

The convergence speed of the multi-UAV tracing 
air pollution source algorithm was estimated under 
the condition of using 15 UAVs, with a wind speed of  
1.5 m/s and varying k3 values: k3 = 0, k3 = 0.25, k3 = 0.50, 
k3 = 0.75, and k3 = 1.00 (Fig. 8).

At all five values of k3, the algorithm successfully 
traced back to the air pollution source, and the maximum 

Fig. 7. The relationship between wind speed and the success rate 
of traceability.

Fig. 8. The convergence speed of algorithms.
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concentration of air pollution was 3671.6 mg/L. With the 
increase of the value of k3, the number of iterations of 
UAV tracing to the maximum pollution source decreased 
gradually. The number of iterations at k3 = 0.00, 0.25, 
0.50, 0.75, and 1.00 in the DSP-UAV algorithm was 
79, 71, 53, 40, and 28, respectively. It was estimated 
that multiple UAVs find the global optimal solution 
the quickest when k3 = 1.00. It should be emphasized 
that the greater the value of k3, the more critical the 
concentration information within the dynamic radius 
is. Under the same conditions, as the importance of 
information within the dynamic radius increases, the 
speed of tracking air pollution sources also increases. 
The introduction of the suppression psychological 
function of UAVs has important positive significance for 
improving the efficiency of tracing pollution sources.

While our investigation focused on the algorithm’s 
convergence within the range of k3 from 0 to 1, it is 
crucial to acknowledge potential pitfalls and drawbacks 
associated with continually increasing this weight. In 
practice, an excessively high weight for the suppression 

psychological function could lead to overemphasizing 
the concentration information within the dynamic 
radius, potentially causing the algorithm to become 
overly sensitive to local fluctuations and noise.  
This could result in erratic behavior and reduced 
accuracy in tracing airborne hazardous pollutants.

The Relationship between the Suppression 
Psychological Value and the Dynamic Radius

The dynamic radius of the UAV mainly depends on 
the value of the suppression psychological function of 
the UAV. The dynamic radius value is directly related 
to the dynamic optimal position within the dynamic 
radius. Under the condition that the wind speed was  
1.5 m/s, k3 = 1, and the number of UAVs was 15, 4 UAVs 
were randomly selected from 15 UAVs to analyze the 
relationship between their dynamic radius and the value 
of suppression psychological function (Fig. 9).

In Fig. 9, the black line represents the change curve 
of the dynamic radius with the number of iterations. The 

Fig. 9. The relationship between suppression of psychological value and R(t).
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lines of the suppression psychological value represents 
the change curve of the suppression psychological 
function with the number of iterations. The dynamic 
radius change trend was similar to the changing trend of 
the suppression psychological value (Fig. 9). However, 
the detailed trends of the two curves were different. This 
was caused by introducing the random factor (rand) in 
Equation (11). The purpose of setting the random factor 
was to randomly change the dynamic radius determined 
by the dynamic suppression psychological function 
to prevent the UAV from falling into the local optimal 
search area. The dynamic radius range marked by the 
orange background was always maintained at 10 m. This 
is because the minimum flight distance between UAVs 
was set to 10 m according to the parameters in Table 1 
to prevent UAVs from colliding with each other.

Multi-UAV Traceability Process

In this paper, the contribution that dynamic 
repression plays is represented by k3. When k3 = 0, the 
contribution of the dynamic repression part is zero, 
which is the same as the traditional PSO algorithm. 
When k3 = 1, the contribution of the psychological part 
of dynamic repression is more outstanding; i.e., as k3 
increases from 0 to 1, the contribution of the dynamic 
repression part increases gradually. The number of 
UAVs is also considered in this paper. If the same 
time frame is used to trace the source of pollution, 
the lower the number of UAVs, i.e., the lower the cost 
required. Section “The Impact of k3 and Number of 
UAVs on the Success Rate of Traceability” examines 
the impact of the number of UAVs on the success rate of 
traceability, which shows that a number of UAVs around 
15 has excellent results; when there are fewer than 15,  

the success rate of traceability gradually decreases. 
Under these conditions, the simulation of the traceability 
path of multiple UAVs was conducted (Fig. 10). 

Fig. 10 shows the multi-UAV traceability control 
roadmap at k3 = 1.0. In the beginning, many UAVs are 
scattered in the search area (white dots). Then, groups 
of UAVs within a dynamic radius interact with each 
other to share information about monitored pollutant 
concentrations, often making the groups of UAVs fly 
in the direction of high concentrations. After a period 
of time, some UAVs search for and trace the plume of 
pollutants to the source of air pollution. In addition, the 
DSP-UAV algorithm can successfully trace the source 
of air pollution. The location of the red pentagram 
is the maximum spatial location for multi-UAV to 
trace the pollution source concentration point. Some 
UAVs pass through the second pollution concentration 
peak and then fly to the peak of maximum pollutant 
concentration. This shows that the DSP-UAV algorithm 
has the advantage of avoiding the fall into local optima.

According to the above numerical simulation 
and analysis, this DSP-UAV algorithm has a faster 
convergence speed than the traditional particle swarm 
optimization algorithm. It can also avoid falling into 
the local optima. The DSP-UAV algorithm has good 
prospects for using multiple UAVs to trace the source of 
atmospheric pollution.

Discussion

The proposed MCTD control structure and DSP-
UAV algorithm have achieved significant results in 
collaboratively tracking pollution sources, using sulfur 
dioxide (SO2) as the model pollutant. The pollutant 
dispersion intensity concentration is 3671.6 mg/L, 

Fig. 10. Multi-UAV traceability process when k3 = 1.0.
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covering an area of 100 km×16 km. The drones’ 
maximum speed is 8 m/s, and the minimum flying 
distance between them is 10 meters.

The DSP algorithm introduces a dynamic intra-
domain learning factor, k3, ranging from 0 to 1, to avoid 
excessive suppression of the psychophysical function 
weights, which can lead to unstable behavior and 
reduced accuracy when tracking harmful pollutants in 
the air. This factor allows the drones to be influenced 
by the state functions of other drones in the group and 
their own state functions while tracking the pollution 
source. Increasing the value of k3 expands the dynamic 
radius of the drones, allowing them to gather more 
environmental information and improve the tracking 
success rate. When k3=1.00, multiple drones can quickly 
find the global optimal solution. The positive impact of 
k3 on the tracking success rate is more significant when 
the number of drones is less than 15. However, when 
the number of drones exceeds 15, the impact of k3 on 
the tracking success rate becomes less significant. This 
indicates that the value of k3 needs to be adjusted based 
on the number of drones and the actual scenario to 
achieve the best tracking effect.

Under low wind speed conditions, the diffusion 
range of the pollution source is limited, making it 
difficult for multiple drones to locate the source quickly 
and resulting in a lower tracking success rate. As wind 
speed increases, the PSO and DSP-UAV algorithms 
show improved tracking success rates. However, 
excessive wind speed can cause chaotic dispersion paths 
for the pollution source, increase the risk of drones 
getting stuck in local optima, and decrease the tracking 
success rate. This indicates the need to consider the 
influence of wind speed on the tracking process and 
select appropriate wind speed conditions for tracking in 
practical applications.

The higher the number of drones, the larger the 
search range and the higher the tracking success rate, 
but cost factors also need to be considered. Experimental 
results show that 15 drones achieve the highest tracking 
success rate, with relatively low costs. This provides a 
reference for selecting the number of drones in practical 
applications.

Compared to the traditional PSO algorithm, this study 
introduces the maximum pollution three-dimensional 
spatial position within the dynamic radius range of the 
drones in the MCTD control structure for multi-drone 
cluster tracking. This method aligns well with the actual 
application scenarios of drones and improves algorithm 
performance. The DSP-UAV algorithm exhibits a higher 
success rate of tracking under wind speeds of 1.5 m/s, 
k3=1, and 15 drones, effectively avoiding getting stuck 
in local optima during the tracking process, thereby 
improving tracking efficiency. 

The MCTD control structure and DSP-UAV 
algorithm provide an effective method for the 
collaborative tracking of pollution sources by multiple 
drones and have practical application value. This study 
provides technical support for air pollution control and 

management and indicates directions for future research. 
In addition, digital watermarking technology is utilized 
to embed representative identification information (i.e., 
digital watermarking) into a digital carrier, which can 
transmit secret messages and judge whether digital 
content has been tampered with [36]. With reference 
to the principle of digital watermarking technology, 
the data transmission function of the MCTD control 
structure is modified, and the data information coming 
from the UAV is labeled using digital watermarking 
technology, which may improve the data processing 
efficiency of the ground control station and enhance the 
data reliability at the same time.

Conclusions

In this study, we designed an MCTD control 
structure for UAVs, which solves the issue of the limited 
flight time and communication range of the UAVs in a 
large area of source traceability. Specifically, this study 
proposed a DSP-UAV algorithm introducing social 
impact theory to UAV manipulation and control. It was 
shown that the UAV obtains the local optimal value 
within the dynamic radius and avoids wasting resources 
caused by frequent transitions of UAVs when relying 
on the global optimal search. As the number of UAVs 
increases and is less than or equal to 15, the tracking 
success rate is significantly improved, and the DSP-
UAV algorithm with k3>0 is superior to the traditional 
PSO algorithm. The significant difference between the 
proposed DSP-UAV algorithm and the traditional UAV 
search algorithm is that it creatively presents detecting 
the optimal pollutant concentration within the dynamic 
radius, which can effectively avoid falling into the 
local optima with good convergence speed. Future 
research directions should include the communication 
processing mechanism of multiple UAVs in emergencies, 
formation control of multiple drones, design of obstacle 
avoidance strategies, and consideration of additional 
meteorological conditions and pollutant diffusion rates, 
which will ensure that multiple UAVs can effectively 
collaborate and enhance their coordination and tracking 
efficiency in complex environments. Meanwhile, it is 
essential to ensure the safety and reliability of drones 
during the tracking process and further validate 
the effectiveness and robustness of the algorithms. 
Validation of the proposed MCTD control structure 
and DSP algorithm in real-world scenarios will be 
essential, incorporating a more comprehensive range 
of meteorological conditions and pollutant dispersion 
rates into our experimental framework. Continuous 
DSP algorithm refinement is warranted to dynamically 
adapt to evolving environmental factors, ensuring its 
robustness and efficacy across diverse meteorological 
conditions and pollutant dispersion rates.

In the future, we will continue to design more reliable 
and robust inter-UAV communication mechanisms 
to ensure that UAV swarms can maintain effective 
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communication in emergency situations and respond 
quickly to emergencies; study more flexible and adaptive 
UAV formation flight strategies to enable UAV swarms 
to collaborate effectively in different environments and 
mission requirements; develop more accurate and safe 
UAV obstacle avoidance algorithms to ensure that UAV 
swarms in the process of performing their missions can 
avoid obstacles and ensure the safety of personnel and 
equipment; consider the effects of more meteorological 
conditions and pollutant dispersion rates, such as wind 
direction, wind speed, temperature, humidity, etc., and 
build corresponding models to improve the accuracy 
and adaptability of the algorithms; and apply artificial 
intelligence and machine learning technologies to the 
control and search strategies of UAV swarms, e.g., using 
deep learning algorithms to learn the characteristics of 
cloud clusters and predict the trend of their dispersion. 
It is of utmost importance to validate the proposed 
MCTD control structure and DSP algorithm in real 
scenarios and conduct more extensive experiments, e.g., 
testing under different meteorological conditions and 
pollutant diffusion rates, to ensure the effectiveness and 
robustness of the algorithm.
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