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Abstract

In this study, the distribution of antibiotic resistance genes (ARGs) in microbial communities on 
the Changhua coast was investigated. Soil samples collected from the Changhua coast were subjected 
to DNA extraction, 16S rDNA sequencing, and microbial community analysis, and four computational 
approaches, including BugBase, Functional Annotation of Prokaryotic Taxa (FAPROTAX), Phylogenetic 
Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, 
were used to conduct comparative analysis of ARGs. The results revealed that Proteobacteria, 
Campylobacteria, Desulfobacteria, Bacteroides, Acidobacteria, and Chloroflexi were the predominant 
bacteria on the Changhua coast. PICRUSt2 analysis revealed that the ARGs phenicol (average 58.8%), 
β-lactams (21.9%), and tetracyclines (11.1%) were the three predominant agents, whereas macrolide-
lincosamide-streptogramin (MLS) (52.2%), phenicol (21.1%), and β-lactams (9.3%) were the three 
predominant ARGs according to the Tax4Fun2 tool. Correlation analysis revealed positive correlations 
between MLS and phenicol, MLS and tetracycline, and phenicol and tetracycline. The results reveal the 
distribution of possible ARGs in Changhua coastal soil, which is helpful for assessing environmental 
safety.
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Introduction

The emergence and spread of drug-resistant 
pathogenic bacteria potentially threaten human health. 
ARGs, whose expression products can inhibit the effects 
of antibiotics, mostly exist in bacteria and originate 
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from environments containing antibiotics. Through 
methods of DNA transfer between bacteria, such as 
transformation, transfection, and conjugation, ARGs 
can be transferred from one DNA system to another 
and from one bacterial cell to another. This facilitates 
the spread of ARGs. Because antibiotic resistance genes 
in human bacterial pathogens originate from multiple 
bacterial sources, the genomes of all bacteria can be 
viewed as a single global gene pool. For example, 
the carriage of resistance genes by plastids and their 
subsequent dissemination affect the transmission of 
ARGs [1-3].

With the advancement of molecular methods, the 
analysis of ARGs has increased rapidly. Metagenomic 
analysis of the distribution of ARGs in the environment 
has shown that they are widely present in the intestines 

of humans, hospital waste and wastewater, animal 
husbandry waste and wastewater, marine sediments, 
forests, and agricultural soils [3-7]. Studies on the gut 
resistome have revealed that ARGs are commonly 
found in human intestinal microorganisms and originate 
from intestinal anaerobic commensal bacteria, and 
ARGs originating from intestinal anaerobic commensal 
bacteria might be transferred to disease-causing 
pathogens, resulting in the emergence of strains 
resistant to multiple drugs [8]. Tracking the distribution 
of ARGs in wastewater from hospitals and downstream 
waters shows that if hospitals use more antibiotics, 
ARGs increase in downstream waters and pass through 
hospitals related to the outflow of wastewater [9]. 
Approximately 20% of human pathogenic bacteria carry 
new ARGs found in human-influenced environments 
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Fig. 1. Location and overview map of the study area. F, H, L, and W represent the Fubao wetland, Hanbao wetland, Fangyuan Lighthouse 
and Wanggong wind power station, respectively.
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(wastewater treatment plants) [10]. The large amounts 
of nutrients and antibiotics present in discharged 
livestock wastewater could lead to changes in the 
bacterial community in river water and cause changes in 
antibiotic resistance [11].

ARGs are ubiquitous and expressed in various 
natural environments, such as samples from humans, 
mouse intestines, marine bacterioplankton, sponges, 
forest soils, and seabed sediments. ARG expression 
is related to different environments, which greatly 
increases the possibility of the occurrence of human 
pathogenic bacteria [12]. ARGs in estuarine sediments 
are diverse and abundant [13] since estuarine and 
coastal habitats located between terrestrial/freshwater 
and marine ecosystems act as natural filtering points 
for pollutants and are hotspots of anthropogenic impacts 
[14]. Understanding the occurrence and distribution 
of antibiotic resistance in microbial populations along 
the coast is thus necessary to reduce health risks from 
exposure to antibiotic-resistant pathogenic bacteria. The 
study of the distribution of ARGs on the Changhua coast 
is still in its initial stages.

This study aimed to investigate potential antibiotic 
resistance in Changhua coastal soil. Changhua's coastline 
is approximately 76 kilometers long and features sandy 
beaches. The intertidal zone in Changhua's coastal area 
reaches 3 to 5 kilometers, and its ecosystem is extremely 
diverse and rich. Waterbirds in this area often gather in 
groups to forage, which is characteristic of the coastal 
landscape. Fishponds and oyster farming can be seen 
in the coastal landscape. Residents along the coast are 
engaged mainly in agriculture, animal husbandry, and 
fisheries. Agriculture and animal husbandry include 
raising cattle, pigs, and poultry, such as chickens, ducks, 
and geese. The fisheries are mainly freshwater fishponds, 

seawater fishponds, and clam and oyster farms [15, 
16]. Soil microbial DNA was prepared, and 16S rDNA 
was sequenced, followed by microbe comparison and 
biodiversity analysis. We applied the bioinformatic tools 
BugBase [17], FAPROTAX [18], PICRUSt2 [19], and 
Tax4Fun2 [20] to perform function prediction.

Materials and Methods

Study Site and Soil Sample Collection

In this study, we collected soils from the Fubao 
wetland (F), Hanbao wetland (H), Fangyuan Lighthouse 
(L) and Wanggong wind power station (W) in Changhua 
County (Fig. 1). 

Three soil samples collected from each location were 
used as replicates, and the collection date was 30 March 
2022. The soil was collected with a soil sampler at a 
depth of 10–20 cm. After collection, the samples were 
placed in labeled sterile polyethylene centrifuge tubes, 
brought to the laboratory, and stored at -20°C. The 
study information included samples, groups, collection 
locations, soil pH values, and electrical conductivity 
(EC) values, which are listed in Table 1.

Soil pH and EC Analysis

For the soil pH analysis, 5 g of air-dried soil was 
placed in a 15 mL sterile polyethylene centrifuge tube, 
followed by the addition of 5 mL deionized water (in 
a 1:1 ratio). The mixture was shaken on a reciprocal 
shaker for 30 minutes at 140 rpm [21]. For the soil 
EC analysis, 5 g of air-dried soil was placed in a 50 
mL sterile polyethylene centrifuge tube, mixed with 

Sample Group Location pH EC (S/m)

F1 Fubao wetland (F) 24°02'43.1"N 120°22'45.2"E 7.56 1.946

F2 Fubao wetland (F) 24°02'43.1"N 120°22'45.6"E 8.14 1.954

F3 Fubao wetland (F) 24°02'41.6"N 120°22'45.8"E 8.3 1.88

H1 Hanbao wetland (H) 24°01'12.4"N 120°21'31.0"E 8.27 1.743

H2 Hanbao wetland (H) 24°01'12.9"N 120°21'31.2"E 8.2 1.939

H3 Hanbao wetland (H) 24°01'13.4"N 120°21'31.2"E 8.02 1.782

L1 Fangyuan Lighthouse (L) 23°58'20.7"N 120°19'25.6"E 8.03 4.85

L2 Fangyuan Lighthouse (L) 23°58'21.8"N 120°19'25.6"E 8.18 6.1

L3 Fangyuan Lighthouse (L) 23°58'22.8"N 120°19'25.9"E 7.31 7.17

W1 Wanggong wind power 
station (W) 23°59'25.3"N 120°20'31.1"E 8.1 1.691

W2 Wanggong wind power 
station (W) 23°59'25.6"N 120°20'30.6"E 7.9 1.134

W3 Wanggong wind power 
station (W) 23°59'25.3"N 120°20'32.2"E 7.93 1.192

Table 1. Metadata. Study information includes sample, group, collecting location, soil pH, and EC.
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25 mL of deionized water (in a 1:5 ratio), and shaken 
on a reciprocal shaker for 60 minutes at 140 rpm. The 
mixture was then left to stand for 30 minutes [22]. The 
pH or EC of the solution (supernatant) was measured 
using a multifunctional water detector meter (WA-
2017SD, LUTRON ELECTRONIC ENTERPRISE CO., 
LTD., Taipei, Taiwan).

DNA Extraction, Polymerase Chain 
Reaction (PCR), and Sequencing

Bacterial genomic DNA was extracted from 0.5 
g of soil via an EasyPrep Stool Genomic DNA Kit 
(BIOTOOLS Co., New Taipei, Taiwan) according to 
the manufacturer’s instructions. In accordance with the 
amplification of the full-length 16S gene with barcoded 
primers for multiplexed SMRTbell library preparation 
and sequencing procedures (Pacbio, Menlo Park, CA, 
USA), the full-length 16S genes (V1-V9 regions) were 
amplified via barcoded 16S gene-specific primers, 
and the PCR products of 1500 bp were chosen and 
purified via AMPure PB beads for SMRTbell library 
construction. Sequencing was further performed in 
circular consensus sequence (CCS) mode on a PacBio 
Sequel IIe instrument to generate HiFi reads with a 
predicted accuracy (Phred scale) = 30. The nucleotide 
sequences determined in the present study have been 
deposited in the NCBI Sequence Read Archive database, 
and the BioProject accession number is PRJNA1138882.

Processing and Analysis of Sequence Data

The demultiplexed 16S rDNA sequences had the 
primers removed and were denoised with DADA2 
[23] to obtain the amplicon sequence variants (ASVs), 
and the derived table indicates the number of times 
each ASV was observed in each sample via QIIME 
2 [24]. For DADA2 denoising steps, the command 
was “qiime dada2 denoise-ccs --i-demultiplexed-
seqs reads3_qza/single-end-demux.qza --p-front 
AGRGTTYGATYMTGGCTCAG --p-adapter 
RGYTACCTTGTTACGACTT --p-min-len 1000 
--p-max-len 1600 --p-n-threads 4”. The sequence 
analyses of taxonomy assignment, alpha-diversity, beta-
diversity, and hierarchical clustering were performed as 
previously described [25].

Potential Antibiotic Resistance Analysis

The potential antibiotic resistance of the microbial 
communities was determined with BugBase [17], 
FAPROTAX [18], PICRUSt2 [19], and Tax4Fun2 [20] as 
described previously [26]. For PICRUSt2 and Tax4Fun2, 
the abundance tables of Kyoto Encyclopedia of Genes 
and Genomes (KEGG) orthologs (KOs) were further 
applied to retrieve the KOs related to antimicrobial 
resistance [27]. The network analysis and Spearman 
correlation of ARGs were generated in R version 4.3.1 
with the graph_from_data_frame and rcorr functions, 
respectively [28].
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Fig. 2. Relative abundances of the phyla of microbial communities in coastal soils. (a) Comparison of individual soil samples. (b) 
Comparison of the four soils from the Fubao wetland (F), Hanbao wetland (H), Fangyuan Lighthouse (L) and Wanggong wind power 
station (W).
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Statistical Analysis

The Kruskal‒Wallis test was applied to compare 
pathogen potential between samples with the dunnTest 
function in R [28]. The nonparametric measure of 
Spearman's rho rank correlation was applied in R with 
the rcorr function [28].

Results and Discussion

Phylogenetic, Diversity, and Microbial 
Community Analyses

Fig. 2 presents the percentages of different bacterial 
varieties in the four locations, and the dominant 
microorganisms were Proteobacteria, Campilobacterota, 
Desulfobacterota, Bacteroidota, Acidobacteria, and 
Chloroflexi. The predominant microorganisms in the 
F soils were Proteobacteria (31.1%), Desulfobacterota 
(16.3%), Campilobacterota (14.9%), Bacteroidota 
(14.1%), and Acidobacteria (4.7%); those in the H 
soils were Proteobacteria (29.8%), Desulfobacterota 
(11.3%), Bacteroidota (10.7%), Campilobacterota 
(8.8%), and Acidobacteria (7.8%); those in the L soils 
were Proteobacteria (20.2%), Acidobacteria (14.2%), 
Desulfobacterota (12.5%), Campilobacterota (9.3%), 
and Bacteroidota (5.3%); and those in the W soils 
were Campilobacterota (28.7%), Proteobacteria (21%), 
Desulfobacterota (18.3%), Bacteroidota (9.4%), and 
Acidobacteria (4.2%). Campilobacterota is a novel 

phylum reclassified from Epsilonproteobacteria [29, 30]. 
Desulfobacterota appeared to be the reclassified bacteria 
from Deltaproteobacteria and Thermodesulfobacteria 
and is capable of sulfate reduction [31]. Indeed, studies 
on coastal mangrove, marsh, or wetland sediment 
microbial communities have shown that the predominant 
phyla are Proteobacteria, Bacteroidetes, Acidobacteria, 
Chloroflexi, and Actinobacteria [32-36].

The community richness (Chao1 and Observed_
features) and diversity (Shannon and Simpson) indices 
did not significantly differ among the F, H, L, and W 
soils; the microbial community in the H soils had the 
highest average Chao1 index of 1100, and that in the 
L soils had the highest Shannon index of 6.6 (Fig. 3a). 
In the mangrove and mudflat sediments of the Mai Po 
wetland, Hong Kong, the Shannon index reached 10.84 
and 11.58, respectively [36]. However, in the coastal 
estuarine wetlands of the Yellow River Delta National 
Nature Reserve and the coastal area of Nantong, 
China, the Shannon index was between 6.4 and 6.6, 
similar to the findings of this study [32, 33]. NMDS, a 
nonparametric ordination analysis based on the Jaccard 
distance, and hierarchical clustering analyses revealed 
that the microbial communities in the F and W soils 
were relatively close within groups, but in the H and L 
soils, the microbial communities presented within-group 
differences, suggesting diverse microbial communities 
in the H and L soils (Fig. 3b, c). Table 1 shows that 
among the four soils, the H and L soils have the highest 
pH (8.16, average) and EC (6.04 S/m, average) values, 
respectively; however, whether these findings are related 
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to the dispersion of the microbial community requires 
additional soil physicochemical analyses for further 
clarification.

Antibiotic Resistance Prediction

We applied antibiotic resistance prediction via the 
programs BugBase [17], FAPROTAX [18], PICRUSt2 
[19], and Tax4Fun2 [20]. The ARG data were obtained 
from the KEGG database, and the KOs corresponding 
to the ARGs were compiled and collected. Furthermore, 
the KOs were retrieved from the KO abundance 
table generated by PICRUSt2 and Tax4Fun2 as the 
proportion of ARGs in the soil microbial communities. 
ARGs of aminoglycoside, beta-lactamase, fosfomycin, 
MLS, phenicol, quinolone, rifamycin, sulfonamide, 
tetracycline, and trimethoprim were identified for 
comparison. The top 3 dominant ARGs were phenicol 
(average, 58.8%), beta-lactam (21.9%), and tetracycline 
(11.1%) according to PICRUSt2 (Fig. 4a) and MLS 
(52.2%), phenicol (21.1%), and beta-lactam (9.3%) 
according to Tax4Fun2 (Fig. 4b). Furthermore, the ARG 
trimethoprim was not detected by PICRUSt2, whereas 
trimethoprim was present in the lowest proportion in 
Tax4Fun2. Both the BugBase and FAPROTAX tools 
can predict the functional features of biologically 
interpretable traits, and pathogenicity, which is 
considered related to antibiotic resistance, was applied 
for comparison (Fig. 4c, d). The soils with the 3 highest 
proportions of potential pathogenicity were L3 (68.3%), 
H1 (57.5%), and H3 (57.2%) according to BugBase. Soils 
H3 (2.09%), L3 (1.58%), and H1 (0.93%) were the 3 

soils with the highest potential pathogenicity predicted 
by FAPROTAX. There was no statistically significant 
difference among the four soils. To further compare 
the degree of potential antibiotic resistance among the 
soil samples, we sorted the soil samples on the basis of 
their relative abundance based on the four functional 
prediction tools: the sample with the smallest proportion 
was marked 1, increasing in order, and the one with 
the highest proportion was 12. Finally, we performed 
nonparametric one‒way ANOVA with the Kruskal‒
Wallis test. There was still no statistically significant 
difference between the groups. Soils H1, H3, and W3 
were the top three, indicating their high potential 
pathogenicity (Fig. 4e).

In estuarine sediments, multidrug-, beta-lactam-, 
aminoglycoside-, and tetracycline-resistant genes 
were the most common, and the relative abundances 
of beta-lactam-, aminoglycoside- and tetracycline-
resistant genes were approximately 17.7%, 16.5%, and 
14.6%, respectively [13]. Furthermore, in coastal soil 
and sediment samples from the eastern seaboard of the 
USA, 76.4% of the samples presented at least one of 
the ARGs detected, and beta-lactam, tetracycline, and 
streptomycin ARGs were detected in 33.2%, 34.4%, and 
42.2% of the samples, respectively [37]. Geographically, 
the level of antibiotic contamination in low- and 
middle-income countries is greater than in high-
income countries, and the ARG abundance distribution 
clearly varies with latitude. For example, the relative 
abundance of sulfonamide and beta-lactam resistance 
genes is the highest at mid-latitudes and decreases at 
both high and low latitudes. The number of tetracycline 
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resistance genes increases with latitude, whereas the 
number of fluoroquinolone, MLS, and aminoglycoside 
resistance genes decreases with increasing latitude [38]. 
In fact, except for the tetracycline resistance genes, the 
ARGs mentioned above presented the highest relative 
abundance at a latitude of approximately 25° (the 
latitude of the study area). According to the prediction 
results of PICRUSt2 and Tax4Fun2, the relative 
abundance of the ARG phenicol in each sample was 
high (Fig. 4a, b). However, other studies have shown 
that although phenicol resistance genes can indeed be 
detected in the environment, their relative proportions 
are low [13, 39-41]. Further quantitative PCR should 
be helpful to clarify these differences. We have used 
PCR reactions to analyze the ARGs, and tetA and tetW 
(tetracycline resistance genes) were detected in F2 and 
H2 soils respectively (data not shown) so far.

Network and Correlation Analyses of 
Antibiotic Resistance Genes

We conducted network analysis to explore the 
structural relationships between the soil microbial 
community and ARGs, as shown in Fig. 5, and the 
networks derived from the PICRUSt2 and Tax4Fun2 
tools presented different structures. For example, the 
data analysis of PICRUSt2 revealed that the ARGs 
fosfomycin, rifamycin, and sulfonamide were connected 
to only a small number of soils, suggesting that their 
distribution is relatively limited and that their amounts 
are relatively small (Fig. 5a). In contrast, the analysis 
data from Tax4Fun2 revealed that all the analyzed 
ARGs were linked to all the soil samples (Fig. 5b). This 
difference may be due to the difference in the use of 
reference sequences and metabolic databases between 
the two methods. The abundance of sulfonamide 

resistance genes is positively correlated with the 
concentration of sulfonamide antibiotics, while the 
concentration of sulfonamide antibiotics in river water is 
positively correlated with frequent human activities and 
nutrients in river water [42]. The relative proportions 
of the ARGs fosfomycin, rifamycin, sulfonamide, and 
trimethoprim in the environment were relatively low. 
Among these genes, the rifamycin resistance gene is 
present in the greatest amount in dust; trimethoprim 
is present in the air; fosfomycin is most likely to be 
present in soil; and sulfonamide is widely distributed 
in dust, air, sediment, soil, and water, with the highest 
proportion in dust and sediment [41]. Furthermore, the 
aminoglycosides, fosfomycin, and tetracycline ARGs 
are mostly distributed in planktonic microorganisms, 
whereas the ARGs in biofilms are beta-lactam, phenicol, 
MLS, rifamycin, and sulfonamides [43].

We further investigated the possible interactions 
among ARGs via Spearman rank correlation analysis. 
The correlation results (P<0.01) revealed that the 3 
variables with the strongest positive correlations were 
MLS with phenicol, MLS with tetracycline, and phenicol 
with tetracycline, and the correlation coefficients were 
0.98, 0.97, and 0.96, respectively (Fig. 6). Interestingly, 
the levels of ermB (a macrolide resistance gene) were 
reported to be positively correlated with those of 
tetracycline resistance genes [44], suggesting that 
both may be related to coselection [45]. Furthermore, 
aadA and aadA2 (aminoglycoside resistance genes) 
were found to be positively correlated with tetM and 
tetG (tetracycline resistance genes), respectively, in 
typical vegetable greenhouse soil, and aadA2 was also 
positively correlated with cmlA (a chloramphenicol 
resistance gene) [40].

Coastal habitats, which lie between terrestrial and 
marine ecosystems, are hotspots of human impact. 
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The differential distribution of ARGs in estuarine 
wetlands could be attributed to anthropogenic factors, 
such as the concentration of detected antibiotics, 
nearby sewage disposal, population density in the area, 
gross domestic product (GDP), aquatic production, 
urbanization ratio, meat production, pig marketing, 
total wastewater, the number of diagnosed and treated 
patients, and the number of residential patients [13]. 
Furthermore, migrating waterbirds [46], agriculture 
[47], animal husbandry [48] and aquaculture [49] on 
or near the Changhua coast may all contribute to the 
spread of ARGs. Importantly, however, the functional 
prediction was based on a few sequences. For example, 
54 functional groups were represented by at least one 
record, and 71.98% of the ASVs were not assigned to any 
group by FAPROTAX. The weighted nearest-sequenced 
taxon index (weighted NSTI) of PICRUSt2 was between 
0.24 and 0.42 (>0.15), suggesting low prediction quality. 
The fraction of sequences unused (FSU) by Tax4Fun2 
was between 0.79 and 0.89. PCR with specific primers 
for ARGs would provide robust evidence of their 
presence [13, 50]. In addition, shotgun metagenomics 
should be used to understand the relationships between 
ARGs and the microbial community [43, 51].

Conclusion

This study revealed that the bacteria Proteobacteria, 
Campilobacterota, Desulfobacterota, Bacteroidota, 
Acidobacteria, and Chloroflexi were the predominant 
microorganisms on the Changhua coast. Phenicol 
(average, 58.8%), beta-lactam (21.9%), and tetracycline 

(11.1%) resistance genes were the top 3 dominant ARGs 
according to PICRUSt2 analysis, and MLS (52.2%), 
phenicol (21.1%), and beta-lactam (9.3%) resistance 
genes were the top 3 dominant ARGs according to the 
Tax4Fun2 tool. Correlation analyses revealed positive 
correlations between MLS and phenicol, MLS and 
tetracycline, and phenicol and tetracycline, suggesting 
the possibility of coselection of these ARGs. Our 
study highlights the types and distributions of possible 
ARGs along the Changhua coast. The origin and actual 
amount of these ARGs require further analysis for 
environmental safety assessment.
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