
Introduction

Since the reform and opening up, China’s economic 
aggregate has experienced sustained and rapid growth. 
Concurrently, due to shifts in development models, 
excessive resource consumption, and low production 
efficiency, China’s ecological environment has suffered 
severe damage, with the rapid increase in agricultural 
carbon emissions drawing widespread societal attention. 
Agriculture, as an open industrial ecosystem, not 

only contributes to climate change but is also a source 
of greenhouse gas emissions. In China, agriculture 
contributes approximately 17% to the nation’s total 
carbon emissions, a figure significantly above the 
global average for agricultural emissions. China has 
committed to addressing climate change by setting 
ambitious targets of reaching carbon peaking by 2030 
and attaining carbon neutrality by 2060, as stated 
in its Nationally Determined Contributions [1]. The 
introduction of the “dual carbon” goals signifies the 
Chinese government’s determination to address climate 
change [2]. Furthermore, the Chinese government’s 
“Opinions on Fully and Accurately Implementing 
the New Development Concept to Achieve Carbon 
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Abstract

The development of the digital economy aligns with the demands of high-quality growth  
and is a crucial means of achieving carbon neutrality goals. This study empirically analyzes  
the effects and mechanisms of the digital economy on agricultural carbon emissions using data from  
31 provinces in China from 2011 to 2021. The results indicate that: (1) There exists an inverted U-shaped 
relationship between the digital economy and agricultural carbon emissions, with a positive slope  
at the minimum value of the digital economy and a negative slope at the maximum value.  
(2) Heterogeneity analysis shows a notable inverted U-shaped relationship in the northern regions, key 
grain-producing areas, and areas where production and consumption are balanced. (3) Rural industry 
integration partially mediates the inverted U-shaped relationship between the digital economy and 
agricultural carbon emissions, indirectly influencing agricultural carbon emissions. (4) The impact of the 
digital economy on agricultural carbon emissions is influenced by innovations in agricultural technology.  
Thus, it is recommended to enhance regional collaboration in the digital economy, harness digital 
technologies, and advance the seamless integration of digital and agricultural sectors to achieve 
modernization and high-quality growth in agriculture.
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Peak and Carbon Neutrality” explicitly sets a long-
term goal of “accelerating the promotion of green 
agricultural development and enhancing agricultural 
carbon sequestration efficiency.” Thus, cutting down 
on agricultural carbon emissions is fundamental for 
reaching the “dual carbon” targets and is a necessary 
condition for promoting green and high-quality growth 
in agriculture.

The reduction of overall agricultural carbon 
emissions is a pressing issue. Researchers have identified 
that urbanization [3], population size [4], investments 
in ICT infrastructure [5], advancements in artificial 
intelligence [6], and the implementation of national 
agricultural policies [7, 8] all play roles in influencing 
agricultural carbon emissions. In recent years, with 
the rapid development and widespread adoption of 
communication technology, the digital economy has 
been experiencing significant growth. By leveraging 
network information technology, cloud computing, and 
artificial intelligence, socio-economic transformations 
can be made [9]. Industries are becoming increasingly 
digitalized, and digital technologies are becoming more 
industrialized. This progression has led researchers 
to investigate the environmental effects of the digital 
economy. Wan and Shi (2022) utilized ordinary least 
squares to explore how the digital economy affects 
sulfur dioxide pollution intensity. Their findings 
showed a negative effect, indicating that the digital 
economy can effectively reduce pollutant emissions 
and support environmental governance [10]. According 
to Li et al. (2021), the digital economy is trending 
towards environmentally friendly development, which 
has effectively boosted green economic efficiency in 
various regions [11]. The “Outline of the Digital Rural 
Development Strategy,” released in 2019, called for the 
thorough development of digital villages, the promotion 
of technological and intelligent farming, and the 
application of precise agricultural practices to achieve 
modernization in agriculture and rural regions. The 20th 
National Congress of the Communist Party of China 
called for accelerating the construction of a “Digital 
China” and a “Beautiful China” to achieve green 
development. In 2022, the State Council’s “14th Five-
Year Plan for Digital Economy Development” made it 
clear that the digital economy is to be a fundamental 
pillar in China’s pursuit of carbon neutrality. The 
digital economy integrates data elements deeply with 
agricultural production, promoting green agricultural 
development through digital pathways, enabling 
intelligent management of carbon emissions, facilitating 
the transformation towards green agriculture, and 
enhancing agricultural carbon sequestration efficiency, 
making realizing agricultural “dual carbon” goals 
possible. However, can the digital economy promote 
agricultural carbon sequestration efficiency and 
effectively curb agricultural carbon emissions? What 
are the mechanisms supporting this effect, and does 
this effect exhibit nonlinear characteristics? The results 
of this research have significant practical implications 

for achieving green and high-quality agricultural 
development in China. 

This paper’s marginal contributions are as 
follows: First, under the new requirements for green 
development, it examines the effects of the digital 
economy on agricultural sustainability, furnishing novel 
empirical data to comprehend the connection between 
the digital economy and agricultural carbon emissions 
and to delve into their nonlinear interactions. Secondly, 
it examines the mechanisms through which the digital 
economy impacts agricultural carbon emissions from 
the viewpoint of rural industry integration, shedding 
light on the principles and pathways involved. Thirdly, 
it investigates the role of agricultural technological 
innovation as a moderating factor in the relationship 
between the digital economy and agricultural carbon 
emissions, demonstrating that this innovation can 
amplify the carbon reduction benefits of the digital 
economy within agriculture. This enhances the current 
body of literature and supplies new theoretical and 
empirical insights to bolster the carbon reduction effects 
of the digital economy within agriculture.

The opening section provides an introduction, 
offering a brief overview of the paper’s background and 
significance. The second section encompasses a review 
of the literature and discusses the study’s limitations. 
The third section presents the theoretical analysis and 
hypotheses. The fourth section describes the research 
design. The fifth section showcases the empirical 
findings and their interpretation. The sixth section 
delivers conclusions and policy recommendations.

Literature Review

Research on Agricultural Carbon Emissions

Studies on agricultural carbon emissions are 
typically grouped into two main categories. One 
category centers on calculating the carbon emissions 
produced by agricultural activities. For instance, 
West and Marland (2002) proposed a calculation 
method based on fertilizer, pesticide, irrigation, and 
seed planting [12]. Based on the established carbon 
emission calculation framework of the IPCC, Liu Yang 
et al. estimated the agricultural carbon emissions for 
Shandong Province between 2000 and 2020, factoring 
in inputs such as agricultural materials, livestock 
farming, and agricultural soil utilization [13]. Moreover, 
Tian et al. (2014) estimated China’s agricultural carbon 
emissions by analyzing energy use, rice production, 
livestock breeding, and unconventional waste treatment 
while exploring the underlying mechanisms [14].  
The second research direction investigates how various 
factors influence agricultural carbon emissions. Zhao et 
al. (2018) used the LMDI model to analyze the impact 
of water and soil resource development on agricultural 
carbon emissions, finding that increased resource input 
generally leads to higher emissions [15]. Similarly, 
Wang et al. (2022) indicated that land use intensification 
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in agriculture positively promotes carbon emissions [16]. 
Through these studies, we gain a deep understanding of 
the sources and drivers of agricultural carbon emissions, 
thereby aiding in the creation of effective mitigation 
measures.

Research on the Digital Economy

The research on the digital economy primarily 
focuses on several important areas. First, the concept 
of the digital economy has been extensively explored. 
Tapscott (1996) introduced the concept [17], while 
Mesenbourg (2001) defined it as encompassing 
three aspects: supporting infrastructure, e-business 
processes, and e-commerce transactions [18]. 
Additionally, Ahmad and Ribarsky (2018) defined the 
digital economy from a transaction perspective, where 
any transaction characterized by “digital ordering 
(e-commerce)” or “digital delivery” falls under the 
digital economy [19]. The second major area of interest 
is the measurement of the digital economy. Ahmad 
et al. (2017) utilized advanced official statistical 
methods from OECD countries to measure the total 
volume and structure of the digital economy [20]. 
Moreover, using relevant indices to measure the digital 
economy has demonstrated that the digital economy is 
interdisciplinary [21]. Compared to singular accounting 
methods, the indicator system provides a more detailed 
perspective. It not only measures the development of the 
digital economy but also reflects its impact on socio-
economic activities. Examples include the European 
Union’s Digital Economy and Society Index (DESI) 
and the International Telecommunication Union’s ICT 
Development Index (IDI) [22, 23]. Researchers have also 
developed indicator systems to measure digital economy 
development. For example, Li and Liu (2021) used the 
entropy method to construct measures based on digital 
industry, digital applications, and infrastructure [24]. 
As stated by Ma and Zhu (2022), urban digital economy 
development can be measured across four dimensions, 
including industrial digitalization, digital infrastructure, 
digital sustainability, and digital industry integration 
[25]. Finally, the impact of the digital economy has been 
a significant area of research. According to Meltzer 
(2019), the use of digital technology can improve trade 
efficiency, indicating that digital trade will be the 
direction of future development [26]. Further studies 
suggest that digital economy development positively 
influences regional economic growth, innovation 
efficiency, and total factor productivity [27-29]. Mo 
et. al. (2023) also pointed out that by optimizing 
agricultural industrial structures and promoting 
agricultural technology, green finance helps achieve 
the goal of agricultural carbon reduction[30]. Chang’s 
(2022) research indicates that by strengthening farmers’ 
entrepreneurial abilities and promoting innovation 
in agricultural technology, digital finance can play 
a significant role in reducing agricultural carbon 
emissions [31].

In conclusion, although existing literature extensively 
explores the digital economy and agricultural carbon 
emissions as separate topics, there is a lack of studies 
focusing specifically on their interrelationship. Only 
a few scholars have indirectly explored the interaction 
between the two. This study attempts to address this 
research deficiency by evaluating the development level 
of the digital economy and analyzing panel data from 
31 provinces in China from 2011 to 2021, aiming to 
verify the impact of the digital economy on agricultural 
carbon emissions and its mechanisms. However, this 
study has several limitations. Primarily, the empirical 
analysis is limited to provincial-level data due to the 
unavailability of data at the prefectural level. Second, 
while the study considers six factors – pesticides, 
plastic film, irrigation, diesel, fertilizers, and tillage – in 
measuring agricultural carbon emissions, other factors, 
such as farming practices and crop types, also affect 
emissions and require further investigation. Lastly, the 
study selects a series of macro-level variables that may 
influence agricultural carbon emissions without delving 
into micro-level factors like residents’ environmental 
awareness. Future research could involve field surveys 
to obtain more detailed data for an in-depth analysis.

Theoretical Analysis and Hypotheses

1. The direct effects of the digital economy on 
agricultural carbon emissions

Based on data and internet technology, the digital 
economy has emerged as a new economic form during 
technological innovation and industrial upgrading. 
It plays an important role in promoting green, low-
carbon development and achieving the “dual carbon” 
goals. While research shows that the internet helps 
improve environmental quality, it is also important 
to acknowledge that the digital economy has negative 
environmental impacts. Some scholars have pointed 
out that the relationship between the development 
of the digital economy and carbon emissions is not 
linear but shows an inverted U-shaped trend [32, 
33]. In the agricultural sector, with the improvement 
of digital rural infrastructure, the integration of the 
digital economy with the agricultural economy has 
notably enhanced production efficiency and resource 
utilization, effectively reducing carbon emissions in the 
agricultural sector [34]. Farmers can use information 
technology to implement scientific management 
methods in agricultural production, accurately manage 
the production and processing of agricultural products, 
and optimize the input of agricultural materials. This 
reduction in the use of production materials, coupled 
with improved production efficiency, leads to lower 
carbon emissions from agricultural production.

Therefore, Hypothesis 1 is proposed:
H1: The digital economy exhibits a nonlinear impact 

on agricultural carbon emissions.
2. The intermediary effect of rural industrial 

integration
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Rural industrial integration development means 
mutual penetration and combination within agriculture 
and between agriculture and rural secondary and 
tertiary industries, thereby forming an innovative 
agricultural development model. By cross-integrating 
industries, new business models are generated, 
extending the agricultural industrial chain and 
ultimately forming agricultural industrial complexes 
and consortia, achieving agricultural modernization 
[35]. During the agricultural modernization process, 
rural industrial integration leverages new technologies 
and models to optimize industrial structures, enhance 
agricultural production levels, and effectively reduce 
agricultural carbon emissions [36, 37]. On the one 
hand, the mutual penetration and cross-fusion within 
rural areas continuously optimize the agricultural 
industrial structure, establishing new breeding 
models based on agricultural resource endowments 
that coordinate the development of food, production 
materials, and economic crops. Examples include “fish-
rice symbiosis,” “shrimp-rice symbiosis,” and “fish-
vegetable symbiosis.” These new breeding models not 
only expand agricultural ecological cycles but also 
integrate economic and ecological benefits, thereby 
reducing agricultural carbon emissions. From another 
perspective, by relying on agricultural ecological 
resources, these models fully explore and expand the 
multifunctionality of agriculture, vigorously developing 
new agricultural industry systems that integrate 
production, living, and ecological functions, such as 
rural tourism, leisure agriculture, and popular science 
education. These new agricultural industry systems 
blend the core of traditional agriculture with modern 
agricultural technology, ensuring the efficient use 
of agricultural resources while also focusing on the 
sustainable development of agricultural resources and 
ecosystems, thus further reducing agricultural carbon 
emissions. To summarize, through the integration of 
rural industries, not only is the agricultural industrial 
structure improved and production efficiency enhanced, 
but it also promotes the harmonious development of 
agricultural ecology and economic benefits, effectively 
reducing agricultural carbon emissions. This provides 
solid support for achieving agricultural modernization 

and green, low-carbon development. Therefore, 
Hypothesis 2 is proposed:

H2: Rural industry integration reduces agricultural 
carbon emissions by enhancing the level of digital 
economy development.

3. The moderating effect of agricultural technological 
innovation

Digital platforms provide farmers with an efficient 
space for information exchange, significantly lowering 
the costs of information acquisition and sharing. Through 
networks and mobile devices, farmers can easily access 
and disseminate necessary agricultural production 
technology information [38]. The learning, application, 
and transformation of agricultural technologies often 
depend on government financial support [39]. The 
development of digital inclusive finance lowers barriers 
to financial services and expands coverage, offering 
broader financial support to farmers, reducing credit 
constraints, and promoting the implementation and 
application of agricultural technologies.

Advanced agricultural technology also plays a 
positive role in the reduction of agricultural carbon 
emissions [40]. With the development of smart 
agriculture, resource utilization efficiency in agricultural 
production has significantly improved, reducing 
unnecessary energy consumption and greenhouse gas 
emissions. Agricultural technological innovation is 
prominently seen in the application of biotechnology, 
such as the development of genetically modified crops 
and the use of microbial fertilizers. These technologies 
not only enhance crop resistance to pests and diseases 
but also reduce the use of chemical pesticides, thereby 
decreasing the carbon footprint of agricultural 
production. Additionally, the resource-based treatment 
of agricultural waste, such as bioenergy development, 
offers new solutions for reducing agricultural carbon 
emissions. Based on this, we propose Hypothesis 3:

H3: Agricultural technological innovation moderates 
the impact of the digital economy on agricultural carbon 
emissions.

Fig. 1. Logical framework for theoretical analysis.
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  (1)   

In Equation (1), CE denotes the total carbon 
emissions, while Sijt and Fijt represent the carbon 
emissions and input quantities from the j-th carbon 
source in the i-th province (city) in year t. Qj indicates 
the corresponding carbon emission coefficients for these 
sources. Specific details are provided in Table 1.

Independent variable: Level of digital economy 
development (DIG). Taking into account data availability 
and scientific rigor, we have established an index system 
to gauge the level of digital economy development 
(see Table 2). The level is calculated using the entropy 
method, with specific indicators detailed in Table 2.

Mediating variable: Rural Industrial Integration 
(RII). A rural industrial integration index system, 
including 5 primary indicators and 6 secondary 
indicators (see Table 3), has been established.  
The entropy method is used to determine the level of 
rural industrial integration.

Moderating variable: Agricultural Technological 
Innovation (TECH): Measured by the number of 
agricultural technology patents (thousand pieces).

Control variables: (1) Rural Human Capital Level 
(Edu): Calculated as [(Number of illiterate individuals 
* 0) + (Number of elementary school attendees * 6)  

Experimental

Variable Selection

Dependent Variable: Total Carbon Emissions from 
Agriculture (CE). This research begins by estimating 
the carbon emissions from each input factor in 
agriculture. According to the IPCC calculating method, 
the main sources of agricultural carbon emissions 
include pesticides, agricultural plastic film, irrigation 
water, diesel fuel, fertilizers, and farming activities [41].  
The calculation formula is as follows:

Table 1. Sources of agricultural carbon emissions and coefficients.

Carbon Source Carbon Emission 
Coefficients Sources

Pesticides 4.93 kg/kg ORNL, USA

Agricultural films 5.18 kg/kg IAREE, NAU

Irrigation 266.48 kg/hm2 Ding et al.[38]

Diesel 0.59 kg/kg IPCC2013

Fertilisers 0.89 kg/kg ORNL, USA

Ploughing 312.60 kg/hm2 CBT, CAU

Table 2. Indicator system for the level of development of the digital economy.

Level 1 indicators Level 2 indicators Level 3 indicators Causality

Digital foundations

Breadth of information 
transmission Length of fiber optic cable (kilometers) +

Signal coverage breadth Number of cell phone base stations (ten thousand) +

Extent of Internet 
broadband infrastructure Number of Internet broadband access ports (ten thousand) +

Cell phone penetration Cell phone penetration rate (number per 100 population) +

Internet penetration Internet access as a proportion of resident population (%) +

Digital 
industrialization

Level of development 
of the post and 

telecommunications 
industry

Total telecommunication services per capita (ten thousand yuan) +

Total postal operations per capita (ten thousand yuan) +

Express delivery volume (ten thousand pieces) +

Level of development of 
software and information 

technology services

Revenue from software operations ( ten thousand yuan) +

Number of employees in the information services industry
 (ten thousand people) +

Output value of information service industry 
(hundred million yuan) +

Industrial 
digitization

Degree of enterprise digital 
development

Number of websites owned by enterprises (number) +

E-commerce sales
 (hundred million yuan) +

Level of development of 
digital financial inclusion

Breadth of digital financial coverage +

Depth of use of digital finance +

Degree of digital finance digitization +
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+ (Number of middle school attendees * 9) + (Number 
of high school attendees * 12) + (Number of individuals 
with associate, bachelor, or graduate degrees * 16)  
/ Population aged six and above. (2) Traffic Infrastructure 
Level (Traffic): Represented by road length per rural 
population. (3) Degree of Mechanization (Machine): 
Measured by the ratio of total agricultural machinery 
power to the workforce in the primary sector. (4) Scale 
of Agricultural Land Operation (Lscale): Determined by 
the ratio of the total sown area of crops to the number 
of workers in the primary sector. (5) Planting Structure 
(Stru): Expressed as the proportion of grain sown area 
to the total crop sown area, illustrating a shift towards 
grain-centric agriculture.

Model Specification

Baseline Regression Model

The study establishes a model aimed at analyzing 
the direct impact of the digital economy on agricultural 
carbon emissions. Hypothesis 1 is validated using 
a two-way fixed effects panel model, as described in 
Equation (2):

 (2)

Equation (2) shows the direct impact of the digital 
economy on agricultural carbon emissions, where i 
represents the province/city and t represents time. CE 
stands for agricultural carbon emissions, DIG represents 
the digital economy, and DIG² is the quadratic term 
of the digital economy. Control stands for a series of 
potential control variables. β0 is the intercept term,  
β1-β3 are the regression coefficients for the respective 
variables, μi represents the province/city fixed effects, 

γt represents the year-fixed effects, and εit is the random 
error term.

Mediation Models

To delve deeper into the mechanism through 
which the digital economy impacts agricultural 
carbon emissions, a mediation variable is introduced, 
and stepwise regression analysis is performed.  
The mediation model is established as follows:

  (3)

 (4) 

  (5)

RIIit represents the mediation variable: rural 
industrial integration. α, β, and δ denote coefficients. 
μi and γt represent province and year fixed effects, 
respectively. εit is the random error term.

Moderation Effects Model

To study the moderating role of agricultural 
technological innovation (TECH) in the impact of the 
digital economy on agricultural carbon emissions, this 
research establishes the following moderated effect 
model.

  (6)

Table 3. Rural Industrial Integration Indicator System.

Level 1 indicators Level 2 indicators Description of indicators Causality

Extension of the 
industrial chain

Commodity rate of agricultural 
products

Ratio of main business income from agricultural and 
sideline food processing to the total output value of 
agriculture, forestry, animal husbandry, and fisheries

+

Per capita added value of the 
primary industry

Ratio of primary industry added value to the rural 
population +

Multifunctional 
utilization

The proportion of non-
agricultural employment in 

rural areas

The ratio of (rural employment minus primary industry 
employment) to rural employment +

Agricultural income 
increase Income level of rural residents Per capita disposable income of rural residents +

Integration of 
agriculture and service 

industries

Proportion of services in 
agriculture, forestry, animal 

husbandry, and fisheries

The ratio of the total output value of agricultural, forestry, 
animal husbandry, and fishery services to the total output 

value of agriculture, forestry, animal husbandry, and 
fishery

+

Urban-rural integrated 
development

Urban-rural per capita income 
ratio

Ratio of per capita disposable income of urban residents to 
that of rural residents –
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This study verifies the inverted U-shaped moderating 
effect by multiplying the moderating variable with 
both the linear and quadratic terms of the independent 
variable (DIG). The interaction with the linear term 
assesses the moderation of the inflection point, while 
the interaction with the quadratic term evaluates 
the moderation of the curve’s steepness, flatness, or 
orientation.

Variable Selection

Given data availability and scientific rigor, this study 
uses panel data from 31 provinces (excluding Hong 

Kong, Macau, and Taiwan) in China for the period 
of 2011-2021. Data sources include the “China Rural 
Statistical Yearbook,” “China Agricultural Yearbook,” 
“China Statistical Yearbook,” provincial statistical 
yearbooks, the EPS database, and the GuoYian Web. 
Missing data for specific indicators in certain regions 
and years were addressed using linear interpolation. 
Descriptive statistics of the data used in this paper are  
in Table 4. Table 5 shows the full variable annotation 
table.

Table 4. Descriptive Statistics.

Variable Obs Mean Std. Dev. Min Max

CE 341 5.3730 1.1244 2.6641 6.9035

DIG 341 0.0953 0.0577 0.0333 0.2127

DIG² 341 0.0124 0.0141 0.0011 0.0453

Edu 341 9.1749 0.9966 6.6762  12.6609

Traffic 341 0.0896 0.0753 0.0105 0.4519

Machine 341 4.7517 2.2384 1.5501    13.3956

Lscale 341 7.5135 4.1445 2.0884    29.1958

Stru 341    66.0841     14.5092    35.5125    97.0753

RIi 341 0.2862 0.0708 0.2257 0.4916

Agrfi 341    11.5782 3.3940 4.1097    20.3840

TECH 341 2.8232 3.0518 0.0070    16.6510

Table 5. Variable comment table.

Variable Full name of the variable Variable Meaning

CE Agricultural carbon emissions Calculation of agricultural carbon emissions by region based on the ipcc land 
release coefficient

DIG Level of digital economy 
development The level is calculated using the entropy method

Edu Rural Human Capital Level

Calculated as [(Number of illiterate individuals * 0) + (Number of elementary 
school attendees * 6) + (Number of middle school attendees * 9) + (Number of 
high school attendees * 12) + (Number of individuals with associate, bachelor, 

or graduate degrees * 16)] / Population aged 6 and above

Traffic Traffic Infrastructure Level Represented by road length per rural population

Machine Degree of Mechanization Measured by the ratio of total agricultural machinery power to the workforce in 
the primary sector

Lscale The scale of Agricultural Land 
Operation

Determined by the ratio of the total sown area of crops to the number of workers 
in the primary sector

Stru Planting Structure Expressed as the proportion of grain sown area to the total crop sown area

RII Rural industrial integration The entropy method is used to determine the level of rural industrial integration.

TECH Agricultural technological 
innovation Measured by the number of agricultural technology patents(thousand pieces)

Agrfi The intensity of financial inputs to 
agriculture

 The ratio of agriculture, forestry and water expenditures to total government 
expenditures
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Results and Discussion

Benchmark Regression

The baseline regression results of this study are 
shown in Table 6, clarifying the impact of the digital 
economy on agricultural carbon emissions. The 
Hausman test results strongly reject the null hypothesis, 
indicating that a fixed effects model should be applied. 
The study results demonstrate that the coefficients 
of the digital economy’s linear term are positive and 
significant, whereas the coefficients of the quadratic 
term are negative and significant. The U test analysis 
reveals that the curve’s inflection point is 0.1013, which 
falls within the digital economy range of [0.0333, 
0.2127]. When the digital economy is at its lowest 
value of 0.0333, the slope of the curve is positive, but 
when the digital economy reaches its highest value of 
0.2127, the slope turns negative. The results indicate 
that when the digital economy is at its minimum 
value, the slope is positive. When it is at its maximum 
value, the slope is negative, validating the inverted 
U-shaped curve characteristics [42]. The study results 

support Hypothesis 1 and confirm the Environmental 
Kuznets Curve (EKC) hypothesis, which posits that 
environmental pollution increases in the early stages 
of economic development but decreases after reaching 
a certain level due to technological advancements and 
industrial structure optimization. In the beginning, 
the digital economy drives an increase in agricultural 
carbon emissions. As the digital economy continues 
to develop, its effect on increasing agricultural carbon 
emissions diminishes, ultimately showing a notable 
carbon reduction effect. The reason might be that in the 
initial phase of the digital economy, the preliminary 
adjustment of technology application and resource 
allocation could cause a short-term rise in agricultural 
carbon emissions. The adaptation period required for 
the introduction and promotion of new technologies may 
temporarily increase energy consumption and reduce 
production efficiency. As the digital economy continues 
to advance, the ongoing maturation and optimization of 
technology will improve resource utilization efficiency 
and decrease energy consumption, gradually reducing 
agricultural carbon emissions and showing a significant 
carbon reduction effect.

Table 6. Benchmark Regression Result.

Variable (1) (2) (3) (4) (5) (6)

DIG 2.0952*** 2.1059*** 1.9745*** 1.7340*** 1.2235** 1.3682**

(0.6764) (0.6668) (0.7079) (0.6235) (0.6038) (0.5792)

DIG² -9.8162*** -9.5711*** -9.0002*** -8.1253*** -6.3616*** -6.7530***

(2.3504) (2.2364) (2.4118) (2.0937) (2.0454) (1.9548)

Edu -0.0917*** -0.0903*** -0.0574* -0.0546* -0.0567**

(0.0353) (0.0346) (0.0294) (0.0279) (0.0279)

Traffic -1.1882** -1.2163** -1.4243*** -1.3282***

(0.5175) (0.4714) (0.4822) (0.4864)

   Machine 0.0346*** 0.0180*** 0.0186***

(0.0053) (0.0056) (0.0055)

Lscale 0.0184*** 0.0186***

(0.0050) (0.0050)

Stru -0.0016

(0.0024)

Province FE YES YES YES YES YES YES

Year FE YES YES YES YES YES YES

_cons 5.2950*** 6.1327*** 6.2313*** 5.7797*** 5.7401*** 5.8455***

(0.0376) (0.3163) (0.3128) (0.2570) (0.2426) (0.2830)

N 341 341 341 341 341 341

adj. R2 0.9960 0.9962 0.9964 0.9970 0.9971 0.9971

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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Even with the introduction of control variables, the 
significant positive effect of the linear term and the 
significant negative effect of the quadratic term of the 
digital economy on agricultural carbon emissions remain 
unchanged, confirming the reliability of the inverted 
U-shaped relationship between the digital economy and 
agricultural carbon emissions. In the baseline regression 
analysis, the enhancement of rural human capital 
and transportation infrastructure has a significantly 
negative effect on agricultural carbon emissions, 
which may imply that these improvements increase 
agricultural efficiency and decrease carbon emissions. 
The significant positive effect of mechanization level 
and farm-scale management on carbon emissions may 
be due to the higher energy consumption and carbon 
emissions associated with mechanization and large-scale 
agricultural operations in the short term. The effect of 
cropping structure on agricultural carbon emissions is 
not pronounced.

Heterogeneity Analysis

The results of the heterogeneity analysis, shown in 
Table 7, indicate significant differences in the impact of 
the digital economy on agricultural carbon emissions 
across different regions and agricultural zones. 
Particularly in the northern region, the development 
of the digital economy exhibits a significant inverted 
U-shaped effect on agricultural carbon emissions. 
Initial technological upgrades and equipment updates 
increase emissions, but as digital technologies develop 
and management measures are optimized, emissions 
gradually decrease. In contrast, in the southern region, 

the impact of the digital economy on agricultural carbon 
emissions is not significant, and the inverted U-shaped 
relationship is weaker, possibly because agricultural 
production in the south is more dispersed.

The development of the digital economy shows  
a significant inverted U-shaped effect on agricultural 
carbon emissions in major grain-producing areas and 
regions with balanced production and consumption. 
This reflects that initial improvements in production 
efficiency increase emissions, but as technology matures 
and management practices are optimized, emissions 
begin to decrease. In major grain-consuming areas, the 
impact of the digital economy on agricultural carbon 
emissions is not noticeable, possibly because these areas 
depend more on external supply and market distribution, 
resulting in fewer agricultural activities.

Influence Mechanism Test

The regression analysis results of the mediation 
effect show in Table 8 Column (1) that there is a 
distinct inverted U-shaped relationship between the 
digital economy and agricultural carbon emissions, 
indicating that with the growth of the digital economy, 
agricultural carbon emissions initially increase and 
then decrease. According to the data in Column (2) of 
Table 8, the digital economy’s impact on rural industry 
integration includes a negative first-order coefficient 
and a positive second-order coefficient, implying a 
nonlinear dynamic characteristic in the relationship. 
In the early phases, introducing the digital economy 
may require considerable investments involving 
technology, equipment, training, and adapting to new 

Table 7. Heterogeneity Test.

Variable

(1) (2) (3) (4) (5)

Northern Southern Main Grain 
Producing Areas

Main Grain 
Consumption 

Areas

production-sales 
balanced area

DIG 3.9267*** 0.9093 1.0060** -0.3894 2.0389*

(0.9549) (0.6780) (0.4770) (1.9838) (1.0708)

DIG² -16.0980*** -4.1562* -5.0465*** -4.6864 -6.8102*

(3.4288) (2.3215) (1.7129) (5.5637) (3.8570)

Control YES YES YES YES YES

Province FE YES YES YES YES YES

Year FE YES YES YES YES YES

_cons 6.1377*** 5.7884*** 5.6106*** 5.6154*** 5.8518***

(0.4680) (0.2452) (0.3538) (0.6940) (0.2368)

N 165 176 143 77 121

adj. R2 0.9974 0.9981 0.9907 0.9956 0.9987
Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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operational models. These investments may increase 
operational costs in the short term, leading to poor 
initial performance in industrial integration. As the 
scale of the digital economy expands, network effects 
begin to emerge. More farmers and enterprises join  
the digital economy ecosystem, making information, 
technology, and market resources more concentrated and 
efficiently utilized, further promoting rural industrial 
integration.

In Column (3) of Table 8, when rural industrial 
integration is used as a mediating variable, the effect of 
the digital economy on agricultural carbon emissions 
remains significant, but the coefficient is reduced. This 
means that rural industrial integration plays a partial 
mediating role in the relationship between the digital 
economy and agricultural carbon emissions. The digital 
economy, through rural industrial integration, optimizes 
industrial structure and improves production efficiency, 
thereby reducing carbon emissions in the agricultural 
production process.

Moderation Effect Test

During the initial phase of digital economy 
development, agricultural carbon emissions rise, but as 
the digital economy matures to a certain point, these 
emissions start to decline. Agricultural technological 
innovation acts as a significant moderating variable 
in this relationship. During the initial phase of digital 
economy development, the negative moderating effect of 
agricultural technological innovation (interaction term 
coefficient = -0.3751) indicates that it helps mitigate 

the initial increase in agricultural carbon emissions. 
This is because technological innovation leads to more 
efficient agricultural production methods and resource 
utilization. 

As the digital economy continues to develop, the 
positive moderating effect of agricultural technological 
innovation (interaction term coefficient = 1.8128) 
facilitates the application and dissemination of low-
carbon technologies, further reducing agricultural 
carbon emissions (see Table 9). This demonstrates 
that at higher levels of digital economy development, 
agricultural technological innovation can more fully 
realize its potential, driving agricultural production 
towards low-carbon and green practices. Thus, 
agricultural technological innovation plays a stage-
specific moderating role in the inverted U-shaped 
relationship between the digital economy and 
agricultural carbon emissions. In the initial stages, it 
helps to alleviate the rise in carbon emissions due to 
the digital economy, and in the more mature stages, it 
effectively promotes the decrease in carbon emissions.

Sensibility Analysis

Adding Control Variables

To reduce bias from omitted variables, additional 

Table 8. Mediation Analysis. Table 9. Moderating Effects Estimation.

Variable
(1) (2) (3)

CE RII CE

DIG 1.3682** -0.6793*** 1.1702**

(0.5792) (0.2045) (0.5539)

DIG² -6.7530*** 3.4027*** -5.7612***

(1.9548) (0.6541) (1.8587)

RII – – -0.2914*

– – (0.1517)

Control YES YES YES

 Province FE YES YES YES

Year FE YES YES YES

_cons 5.8455*** 0.1898 5.9008***

(0.2830) (0.1330) (0.2686)

N 341 341 341

adj. R2 0.9971 0.8451 0.9972

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01

Variable
(1) (2)

CE CE

DIG 1.5783*** 4.2294***

(0.6045) (0.9600)

DIG² -7.5813*** -17.8993***

(2.1436) (3.6600)

TECH 0.0036 0.0096

(0.0030) (0.0086)

DIG*TECH – -0.3751**

– (0.1479)

DIG²*TECH – 1.8128***

– (0.5449)

   Control YES YES

   Province FE YES YES

    Year FE YES YES

_cons 5.8460*** 5.6854***

(0.2838) (0.2794)

N 341 341

adj. R2 0.9971 0.9973

Standard errors in parentheses
* p<0.1, ** p<0.05, *** p<0.01
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control variables such as financial support for 
agriculture were introduced, verifying the robustness 
of the baseline regression results. As shown in Column 
(1) of Table 10, the coefficient for the linear term of the 
digital economy is significantly positive at 1.3795, and 
the coefficient for the quadratic term is significantly 
negative at -6.7953, once again proving the robustness of 
the baseline results.

Excluding Directly Governed Municipalities

Due to significant differences in the development 
levels of the digital economy and agricultural carbon 
emissions between municipalities and other regions, 
we excluded samples from Beijing, Tianjin, Shanghai, 
and Chongqing to ensure the accuracy of the regression 
results. As shown in the regression results in Column 
(2) of Table 10, the coefficient for the linear term of the 
digital economy is significantly positive at 0.9126, and 
the coefficient for the quadratic term is significantly 

negative at -4.1018, further validating the robustness of 
the baseline results.

Excluding Extreme Values

To handle outliers, the study truncated 1% of the 
tail from all variables in the baseline regression. After 
truncation, the regression results in Column (3) of Table 10 
show that the coefficient for the linear term of the 
digital economy is significantly positive at 1.6799, and 
the coefficient for the quadratic term is significantly 
negative at -7.8963, further confirming the robustness 
of the baseline results. Overall, these robustness tests 
validate Hypothesis 1 and strengthen the argument for 
the baseline regression results.

Lagged Terms

To consider the potential lagged effects of the digital 
economy on agricultural carbon emissions, we included 

Variable

(1) (2) (3) (4) (5)

Add control 
variables

Excluding 
Directly Governed 

Municipalities

Excluding 1% 
Extreme Values Lagged Terms Endogeneity 

Test(GMM)

DIG 1.3795** 0.9126*** 1.6799*** – 2.3365*

(0.6036) (0.3240) (0.5672) – (1.2410)

DIG² -6.7953*** -4.1018*** -7.8963*** – -8.6465*

(2.0917) (1.1492) (1.9420) – (4.7495)

L.DIG – – – 1.1552* –

– – – (0.6966) –

L.DIG² – – – -6.2064** –

– – – (2.4531) –

Agrfi -0.0003 – – – –

(0.0031) – – – –

L.CE – – – – 1.0212***

– – – – (0.0630)

AR (1) – – – – 0.020

AR (2) – – – – 0.857

Hansen – – – – 0.545

Control YES YES YES YES YES

Province FE YES YES YES YES YES

Year FE YES YES YES YES YES

_cons 5.8495*** 5.9001*** 5.8648*** 5.6037*** 0.3966

(0.2895) (0.2044) (0.2877) (0.3478) (1.2435)

N 341 297 341 310 310

adj. R2 0.9971 0.9983 0.9969 0.9972 /

Table 10. Robustness test results.
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one-period lagged variables of the digital economy 
and its squared term in the regressions. The regression 
results in Columns (4) of Table 10 show that the 
coefficients for the one-period lagged variables and its 
squared term are 1.1552 and -6.2064, respectively, both 
significant and supporting Hypothesis 1.

Endogeneity Test

Given the potential inertia in agricultural carbon 
emissions, where historical levels may affect current 
outcomes, we introduced the lagged dependent variable 
of agricultural carbon emissions into a dynamic 
panel model. This approach helps mitigate potential 
omitted variable bias and reduces model specification 
errors. To address the endogeneity of the lagged term,  
we employed a two-step system GMM strategy.  
The AR(1) and AR(2) tests for the system GMM 
are 0.020 and 0.857, respectively, indicating no 
autocorrelation of the disturbance term. The Hansen 
test confirms the validity of all instrumental variables, 
demonstrating the appropriateness of our model and 
analysis methods. The significant coefficients for the 
linear and quadratic terms of the digital economy align 
with the baseline regression results, with a positive 
linear term and a negative quadratic term, indicating 
that the baseline model is robust to endogeneity issues. 
Table 10 presents the estimates from the endogeneity 
test.

Conclusions 

Existing research indicates that the digital economy 
significantly effects economic growth, poverty 
alleviation, and reducing urban carbon emissions. This 
paper empirically examines the impact and mechanisms 
of the digital economy on agricultural carbon emissions 
from the perspective of agricultural carbon emissions, 
using panel data from 31 provinces in China (excluding 
Hong Kong, Macau, and Taiwan) from 2011 to 2021. 
The main conclusions include: (1) In terms of regional 
differences, the digital economy’s impact on agricultural 
carbon emissions shows a more significant inverted 
U-shaped trend in northern regions compared to southern 
regions. Regarding differences in grain production areas, 
the inverted U-shaped impact of the digital economy 
on agricultural carbon emissions is more evident in 
major grain-producing areas and balanced production-
consumption areas. (2) The digital economy can impact 
agricultural carbon emissions through the mediating 
effect of rural industry integration. (3) The impact of 
the digital economy on agricultural carbon emissions 
is moderated by agricultural technological innovation.  
(4) Through a series of robustness tests, the existence of 
a significant inverted U-shaped relationship between the 
digital economy and agricultural carbon emissions was 
confirmed.

Based on the above conclusions, the following 
recommendations are proposed. Firstly, vigorously 
develop the digital economy to improve the effectiveness 
of agricultural carbon reduction. Each region should, 
according to its own circumstances, fully utilize 
digital technologies, strengthen data empowerment, 
and maximize the role of data resources in promoting 
green agricultural development through the digital 
economy. Specific measures include strengthening the 
construction of digital infrastructure like household 
broadband and rural networks, promoting knowledge 
related to the digital economy, and providing policy 
guidance. Secondly, take advantage of the opportunities 
brought by the technological revolution to drive the rapid 
integration of the digital economy with the agricultural 
economy. This includes developing smart agriculture, 
technological agriculture, and digital agriculture, 
promoting the integration of technology with industry 
to foster green development and modernization in 
agriculture and rural areas, thereby establishing  
a new framework for digital rural development. 
Thirdly, enhance the role of rural industry integration  
in promoting agricultural carbon reduction by 
promoting high-quality development in rural agriculture 
and optimizing rural industrial structure and resource 
allocation to effectively curb agricultural carbon 
emissions. For example, establishing rural cooperatives 
to integrate resources and promote the integration and 
synergistic development of the industrial chain, creating 
economies of scale, and reducing production costs 
while simultaneously improving resource utilization 
efficiency and reducing carbon emissions. Lastly, drive 
the coordinated regional development of the digital 
economy, especially focusing on the development 
levels in northern regions and major grain-producing 
areas. Promote the widespread application of digital 
technologies in agriculture to enhance their role  
in carbon reduction efforts. By promoting technological 
innovation, low-carbon and energy-efficient agricultural 
production techniques can be adopted, such as precision 
agriculture, smart irrigation, and biodiversity planting, 
to reduce energy consumption and carbon emissions in 
the production process.
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