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Abstract

The digitalization and green transformation of Chinese power companies are crucial for achieving 
sustainable development. However, the deep-level impact mechanisms of digitalization on low-carbon 
transition remain underexplored, especially under the “Dual Carbon” strategy. This study constructs 
a theoretical model based on the Technology-Organization-Environment (TOE) and Resource 
Orchestration theories. Using survey data from 371 managers, we employ Partial Least Squares Structural 
Equation Modeling (PLS-SEM) and Fuzzy-set Qualitative Comparative Analysis (fsQCA) to examine 
the driving factors and pathways of digitalization’s impact on low-carbon transition. The research 
findings indicate that: (1) Seven categories of resources significantly impact the green and low-carbon 
transition; (2) Further analysis reveals that the application degree of green low-carbon technologies, 
relative advantage, green low-carbon transition strategy, and top leadership support serve as mediating 
resources in digitalization promoting the green low-carbon transition of power companies, with top 
leadership support being the critical element; (3) Power companies can successfully achieve a green  
low-carbon transition through three “internal resource-driven” pathways, whereas the lack of policy 
support is the most critical external factor leading to the failure of the green transition. The findings 
enhance theoretical research and offer practical insights for policymakers and the power industry  
on low-carbon transition strategies. 
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Introduction

Due to the increasing frequency of extreme climate 
and environmental issues caused by greenhouse gases 
such as carbon dioxide (CO2), countries worldwide are 
becoming more focused on controlling CO2 emissions 
and achieving sustainable development [1]. In 2020, 
global carbon dioxide emissions reached 32.29 billion 
tons, with energy consumption for power generation 
and heating accounting for 43% of the total emissions 
[2]. The power industry, as the largest source of 
carbon emissions [3], is required to take on greater 
responsibility for emission reductions [4]. Countries 
are actively promoting the low-carbon transition of 
the power industry to mitigate the greenhouse effect, 
and China is no exception. With rapid economic 
development, the demand for energy, particularly 
electricity, is continuously increasing across various 
industries in China. In 2020, China’s total CO2 emissions 
were 9.805 billion tons, with 39.6% originating from 
power generation [5]. As the world’s largest producer of 
electricity and emitter of CO2, China’s power industry 
faces more stringent carbon reduction requirements [6].

To address the significant challenges of carbon 
emission reduction, the Chinese government proposed 
strategic goals of achieving “peak carbon” by 2030 
and “carbon neutrality” by 2060 in 2020. Against 
this backdrop, the power industry is also facing 
unprecedented pressure for emission reductions and 
transformation [7]. On the one hand, to respond to 
the dual carbon strategy, the government has issued a 
series of policies and regulations to provide institutional 
guarantees for the green and low-carbon development 
of the power industry. For example, the impact of 
the carbon emission trading pilot policy on green 
innovation in the power industry[8]. On the other hand, 
the deepening of power market reforms has intensified 
market competition, forcing traditional power enterprises 
to accelerate transformation and upgrading to enhance 
competitiveness. For example, continuous advancements 
in renewable energy technology and cost reductions 
have gradually increased the share of clean energy such 
as wind and solar power in the electricity market [8]. 
However, due to China’s resource endowment of being 
“rich in coal, poor in oil and gas,” the relative maturity 
of coal-fired power technology, and the limitations of 
other energy generation [9], it is difficult for the power 
industry to move away from coal resources in the 
short term [10]. Meanwhile, the continuous increase in 
energy demand, particularly for electricity, driven by 
economic development exacerbates this contradiction 
[11]. Therefore, traditional power production methods 
can no longer meet the requirements of the dual carbon 
strategy, and power enterprises urgently need to 
achieve sustainable development through technological 
innovation and changes in management models.

Fortunately, with the continuous emergence of the 
Fourth Industrial Revolution, digitalization has brought 
profound changes to various countries and industries 

worldwide [12]. The increasing contribution of the digital 
economy to green and low-carbon development [13], 
has provided an opportunity to address this issue. For 
example, digital transformation and digital finance have 
been widely proven to positively impact corporate green 
innovation, promoting high-quality green development 
[14, 15]. The power industry is no exception. Digital 
transformation is considered an effective means to 
drive changes in production and operations, energy 
conservation, and the achievement of green and low-
carbon transformation. Previous studies have shown 
that the introduction of digital technology can optimize 
production and operational activities, management 
models, and operational mechanisms, thereby enhancing 
productivity [16]. This is particularly important for 
energy-intensive and highly polluting industries like 
the power sector. Wang et al. (2023), through analyzing 
data from Chinese listed companies, found that digital 
transformation significantly enhances the green total 
factor productivity (GTFP) of enterprises, particularly in 
traditional industries like the energy sector [17]. Digital 
transformation has provided new opportunities for 
power enterprises to reduce carbon emissions, achieve 
green and low-carbon transformation, and pursue 
sustainable development.

However, despite previous research providing 
valuable insights into the green and low-carbon 
transition of the power industry, there are two main 
limitations: First, previous studies have mainly focused 
on regional or industrial levels, neglecting the “bottom-
up” investigation of influencing factors and mechanisms 
of energy-saving and carbon reduction at the micro-
level of power enterprises. For example, research 
has primarily focused on calculating and predicting 
carbon emissions, identifying influencing factors, 
carbon emission performance, and carbon emission 
efficiency at various scales [18-20], or analyzing the 
impact of carbon reduction technologies on the power 
industry [21]. Second, there is still a lack of research 
on the impact mechanisms and logical relationships of 
green and low-carbon transition of power enterprises  
in the context of digitalization. Especially, the effects of 
the green and low-carbon transition of power enterprises 
are influenced by the complex interaction of various 
internal and external factors, necessitating further 
clarification of the deep mechanisms of digitalization on 
internal organizational resources. 

Therefore, this study, based on the “dual carbon” 
strategy, aims to explore the impact of digitalization 
levels on the green and low-carbon transition of power 
enterprises, thereby clarifying its internal mechanisms. 
Furthermore, based on TOE theory and resource 
orchestration theory, this study reveals the impact of 
internal organizational resources on green and low-
carbon transition, thus uncovering the “black box” 
of how Chinese power enterprises effectively utilize 
organizational resources through digitalization to 
achieve green and low-carbon transition.
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Theoretical Framework  
and Research Hypotheses 

Theoretical Framework

To reveal how digitalization achieves the green and 
low-carbon transition of power enterprises through 
internal resources, this study employs the Technology-
Organization-Environment (TOE) framework to 
identify internal and external resource elements of the 
green and low-carbon transition of power enterprises.  
The TOE framework is a theoretical model that 
analyzes the influencing factors in the adoption and 
implementation of new technologies by enterprises, 
divided into three dimensions: technology, organization, 
and environment [12]. It has been widely applied in 
studies on technology-induced organizational change 
[22]. The digital transformation of power enterprises, 
as a technological forerunner, orchestrates green and 
low-carbon resources through the diffusion of green 
technology innovations, driving green transformation. 
Therefore, it is necessary to comprehensively 
evaluate the green and low-carbon transition of power 
enterprises in the context of digital transformation 
by integrating resource orchestration theory. The 
resource orchestration theory is an advancement of the 
resource-based view (RBV) [23]. Compared to RBV, 
resource orchestration theory emphasizes that the 
effective configuration, combination, and utilization 
of resources and capabilities are essential for gaining 
sustained competitive advantage [24]. Since the green 
and low-carbon transition of power enterprises involves 
complex internal and external factors and their dynamic 

interactions, merely identifying resource elements 
is insufficient to reveal the transition mechanisms. 
Integrating the TOE theory and resource orchestration 
theory provides an effective analytical framework to 
uncover how power enterprises utilize organizational 
resources through digital transformation to achieve a 
green and low-carbon transition. 

Against the backdrop of green and digitalization 
becoming significant features of economic and social 
development [25], this study selects the application 
degree of green and low-carbon technology (AGT) and 
relative advantage (RA) in the technology dimension, 
transformation cost (TC), employee engagement (EE), 
organizational preparedness (OP), green and low-
carbon transformation strategy (GTS), and senior 
leadership support (SSL) in the organization dimension, 
and competitive pressure (CP) and policy support 
(PS) in the environment dimension through the TOE 
framework, considering digital transformation as an 
important influencing factor. Based on this, this study 
constructs a research model for the impact mechanisms 
and implementation paths of the green and low-carbon 
transition of Chinese power enterprises, as shown  
in Fig. 1.

Research Hypotheses

Analysis of the Impact of Digitalization

Digital transformation is the product of the mutual 
promotion of information technology and business 
innovation, exhibiting significant technological and 
economic resonance effects [26]. The digitalization 

Fig. 1. Research model of the mechanisms for achieving green and low-carbon transition in power companies based on digital
transformation.
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level of power enterprises refers to the degree of 
application in information technology, data analysis, and 
automation. Previous studies have shown that the level of 
digitalization can influence the strategic implementation 
of enterprises in various dimensions, such as technology 
and organization, through the diffusion effect of 
technological innovation [12], particularly in terms of 
green and low-carbon transformation. Due to its green 
attributes, digitalization can promote green and low-
carbon development through digital empowerment, 
which has received widespread attention [27-29]. 
The green and low-carbon transformation of power 
enterprises is usually influenced by low-carbon 
technology [30], and internal and external organizational 
environments [31]. For example, Shang et al. (2023) 
found that the level of digital transformation in listed 
companies significantly reduces carbon emission 
intensity by enhancing technological innovation, 
internal control, and environmental information 
disclosure capabilities [32]. This study measures the 
degree of digital transformation of power enterprises by 
their level of digitalization. Based on the above analysis, 
the following hypothesis is proposed:

H1: The digitalization level of power enterprises 
positively impacts their green and low-carbon 
transformation.

Impact of Technological Resources  
on Green and Low-Carbon Transition

Technological resources are the foundation 
for driving the green and low-carbon transition of 
power enterprises. Low-carbon technology, as a key 
tool for achieving green development, is crucial for 
power enterprises in reducing emissions [31]. Power 
enterprises can significantly reduce reliance on fossil 
fuels, decrease greenhouse gas emissions, and achieve 
changes in energy structure and operating models by 
introducing low-carbon technologies such as carbon 
capture and storage, new fuel power generation, and 
smart grids [33]. The extent of green and low-carbon 
technology applications reflects the willingness of 
enterprises to adopt and practice energy-saving and 
carbon reduction technologies. Relative advantage is 
particularly important in the green and low-carbon 
transition. Enterprises gain comprehensive benefits 
from the green and low-carbon transition, such as 
improved cost efficiency, operational effectiveness, 
market competitiveness, and reduced environmental 
impact, bringing economic and social responsibility 
benefits and shaping corporate brand image. Moreover, 
the digitalization level of power enterprises can enhance 
the innovation and utilization efficiency of technological 
resources. For example, Zhang et al. (2023) found that 
digitalization actively promotes innovation in energy 
storage technology [34]. Digitalization also guides 
enterprises to prioritize cost-effective green technologies 
by improving the accuracy of green technology 
investment decisions. Data-driven investment decisions 

not only optimize the allocation of technological 
resources but also enhance the relative advantage of 
enterprises in the green and low-carbon transition, 
accelerating the transformation process. Based on the 
above analysis, the following hypothesis is proposed:

H2a/H2b: The level of digitalization positively affects 
the green and low-carbon transition of power enterprises 
by promoting the application of green and low-carbon 
technologies and enhancing relative advantage.

Impact of Organizational Resources  
on Green and Low-Carbon Transition

The green and low-carbon transition involves 
multiple organizational resource elements, including 
transition costs, employee engagement, organizational 
preparedness, transition strategy, and top leadership 
support. First, the costs of green and low-carbon 
transition encompass technological upgrades, 
infrastructure modifications, personnel training, and 
operational costs. These significant investments may 
hinder short-term financial performance and adoption 
willingness [33]. Digitalization, by optimizing energy 
management and operational processes, can reduce 
transition costs, improve production efficiency, 
and decrease labor demand, thus promoting green 
technology innovation [17]. Second, employees are 
crucial for driving corporate transformation. Active 
employee engagement not only enhances the acceptance 
and implementation of green strategies but also 
effectively promotes green innovation and environmental 
management practices by increasing environmental 
awareness [35]. Digital technologies, such as internal 
social media, online training systems, and data 
visualization tools, can enhance employee engagement 
[36]. Furthermore, good organizational preparedness 
and a clear green and low-carbon transition strategy 
are essential guarantees for a successful transition. 
Organizational preparedness provides foundational 
support for technology-driven corporate transformation, 
ensuring a smooth transition [12], while a clear transition 
strategy offers a defined development direction and 
specific action guidelines, ensuring effective resource 
allocation and utilization. Studies have shown that an 
increased level of digitalization aids in the formulation 
and implementation of green and low-carbon transition 
strategies, enhancing the ability of enterprises to address 
carbon reduction [37]. 

Finally, support from top leadership is a critical factor 
in achieving green and low-carbon transition goals. Top 
leadership support ensures the smooth formulation and 
execution of transition strategies, providing necessary 
direction and motivation, promoting the effective 
allocation of key resources, including technology, 
capital, and personnel, and shaping a positive corporate 
culture that motivates employee participation [38]. In this 
process, digitalization significantly reduces uncertainty 
and risk during the transition by optimizing decision-
making processes, enhancing internal communication 
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is no exception. This study employs a structured 
questionnaire method to quantify the influencing factors 
of digital transformation on the green and low-carbon 
transition of power companies. To ensure the relevance 
and validity of the research variables and measurement 
items within the context of this study, we based our 
questionnaire on established scales from related fields 
[12], modifying them appropriately to fit the specific 
context of the green and low-carbon transition in power 
companies. We also sought advice from industry experts 
and scholars to adjust and refine the questionnaire 
items. To ensure the scientific rigor and reliability of 
the questionnaire, a pre-test was conducted to refine 
and adjust the measurement items, resulting in the final 
questionnaire used in this study.

The questionnaire consists of two parts: the first part 
collects basic information about the respondents, such as 
gender, age, educational background, work experience, 
type of employer, and nature of the organization. The 
second part uses quantitative items to measure the 
core concepts of the research model across the three 
dimensions of Technology-Organization-Environment, 
comprising a total of 42 measurement items. A five-
point Likert scale (1=”strongly disagree,” 5=”strongly 
agree”) was used to assess respondents’ attitudes 
and perceptions. To enhance participation and data 
authenticity, the questionnaire was designed to be 
anonymous to protect participants’ privacy. Before 
completing the questionnaire, respondents from the 
relevant industry were first provided with a definition of 
the green and low-carbon transition in power companies 
and were informed that the survey results would be used 
solely for this academic research.

Data Collection

To ensure the scientific validity and reliability of 
the questionnaire data on factors influencing the green 
and low-carbon transition of power enterprises, a 
detailed online survey method was employed. Firstly, 
the “Wenjuanxing” platform was used to design and 
distribute the questionnaire. The platform’s effectiveness 
in data collection has been widely applied in academic 
research. To enhance the specificity and relevance of the 
questionnaire data, the survey link was distributed to QQ 
and WeChat groups and academic forums related to the 
power industry. Experienced professionals and experts 
were also invited to participate. Participants came from 
various regions and different scales of upstream and 
downstream enterprises in the power industry, including 
management, technical, and operational personnel, 
ensuring the sample’s breadth and representativeness. 
Before completing the questionnaire, participants 
were introduced to the concept of the green and low-
carbon transition in power enterprises and assured of 
the confidentiality of their responses, with results used 
solely for academic research.

To ensure the validity and authenticity of the data, 
three specific questionnaire screening criteria were 

and collaboration, and increasing the transparency and 
traceability of strategy execution [39, 40]. Based on the 
above analysis, the following hypotheses are proposed:

H3a/H3b/H3c/H3d/H3e: Digitalization positively 
impacts the green and low-carbon transition of power 
enterprises by reducing transition costs, enhancing 
employee engagement, improving organizational 
preparedness, strengthening transition strategies, and 
promoting top leadership support.

Impact of Environmental Resources  
on Green and Low-Carbon Transition

The green and low-carbon transition is significantly 
influenced by external environmental resources, 
including competitive pressure and policy support. 
Competitive pressure is a significant external driver 
of the green and low-carbon transition for power 
enterprises. The green and low-carbon transition in the 
power industry exerts a coercive isomorphism effect 
on enterprises, forcing them to follow suit to maintain 
competitiveness. Simultaneously, the increasing market 
demand for clean energy and low-carbon products 
directly drives enterprises to adjust their business 
models to meet this trend [38]. The application of green 
and low-carbon technologies helps improve energy 
efficiency and reduce operational costs, providing 
a competitive advantage. Additionally, enterprises 
mitigate compliance risks through low-carbon 
transition and enhance public image through proactive 
environmental measures [38]. Moreover, policy support 
plays a crucial role in promoting the green and low-
carbon transition of power enterprises. Governments 
reduce the economic barriers and technical obstacles to 
corporate transition by formulating and implementing 
environmental regulations, economic incentives, and 
technical support policies, providing clear directions 
and goals for enterprises [41]. Since investing in 
low-carbon technologies increases corporate costs, 
governments must create market drivers through 
carbon trading systems and renewable energy quotas. 
Economic incentives and environmental standards 
enhance the attractiveness of low-carbon technology 
investments for enterprises, driving the green and low-
carbon transition [33]. Based on the above analysis, the 
following hypotheses are proposed:

H4a/H4b: Competitive pressure and policy support 
positively impact the green and low-carbon transition of 
power enterprises.

Research Methods and Data

Questionnaire Design

Questionnaire surveys, known for their ease of 
implementation and scientific validity, have been 
widely used in studies on organizational innovation 
induced by digitalization [42], and the power industry 
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established. First, questionnaires with excessively short 
completion times were excluded to ensure respondents 
had sufficient time to answer thoughtfully. For example, 
based on the number of items, questionnaires completed 
in less than one minute were considered insufficiently 
thoughtful. Second, common sense questions were 
included to identify and exclude potentially careless 
respondents who answered these questions incorrectly. 
Finally, questionnaires with a high repetition rate of 
answers were excluded to avoid mechanical answering 
and to ensure analyzable results. Through these 
screening steps, a total of 371 valid questionnaires were 
obtained, with an efficiency rate of 80.3%. This sample 
size meets the minimum sample size requirement of 
being greater than ten times the number of items in the 
PLS-SEM model [43], ensuring the reliability of data 
analysis.

Lastly, the basic characteristics of the respondents are 
detailed in Table 1, where the gender ratio is balanced, 
with male and female respondents each constituting 
around 50%. In terms of educational background, 
respondents with a bachelor’s degree or below 
accounted for over 80%, while those with a master’s 
degree or above were less than 20%. This phenomenon 
may reflect the importance of practical experience over 
academic education in the power industry. Additionally, 
the age of respondents was mainly concentrated in the 
25-30 range, with nearly 60% having less than five 
years of work experience, indicating a relatively young 
workforce in power enterprises and high engagement of 
new employees in the green and low-carbon transition.

Since the data in this study were collected through 
a questionnaire survey, there is a potential risk of 

common method bias (CMB) affecting the relationship 
between independent and dependent variables due to 
the singularity of the data collection process and tools 
[44]. To address this issue, we employed the widely used 
Harman’s single-factor test to detect the presence of 
CMB in the data[44]. The results showed that the largest 
single factor accounted for only 38.96% of the total 
variance, which is below the 40% threshold [45]. 

Analytical Methods

To comprehensively explore the mechanisms 
by which digitalization affects the green and low-
carbon transition of Chinese power enterprises, this 
study employs both PLS-SEM and fsQCA for two 
reasons. Firstly, PLS-SEM requires lower distribution 
and quantity requirements of data and can reveal 
causal relationships between variables based on small 
sample sizes by constructing linear combinations of 
latent variables. It is particularly suitable for complex 
models composed of multiple constructs [46]. Thus, 
this method helps in effectively identifying the deep-
seated impact mechanisms of digitalization on the 
green and low-carbon transition of power enterprises 
based on questionnaire data, specifically the “net 
effect” of individual influencing factors. Additionally, it 
reveals the mediating effects of organizational resource 
elements, ensuring the reliability and validity of the 
estimated results [47].

Secondly, fsQCA, a set-theoretic method, identifies 
necessary and sufficient conditions, providing in-
depth logical reasoning and qualitative comparative 
analysis. It analyzes the impact of various combinations 

Table 1. Basic characteristics of survey respondents.

Basic Information Category Frequency Percentage (%)

Gender
Male 207 55.80%

Female 164 44.20%

Education Level

Associate degree or below 116 31.27%

Bachelor’s degree 194 52.29%

Master’s degree 47 12.67%

Age

Doctoral degree 14 3.77%

<25 years 61 16.44%

25-35 years 204 54.99%

36-45 years 68 18.33%

>45 years 38 10.24%

Work Experience

<3 years 135 36.39%

3-5 years 89 23.99%

6-10 years 77 20.75%

11-15 years 43 11.59%

>15 years 27 7.28%
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of factors on the outcome variable, revealing the 
“configuration effects” in complex causal relationships 
[48]. This is particularly suitable for exploring the 
successful pathways and failure reasons of different 
condition combinations in the green and low-carbon 
transition of power enterprises [49]. Through fsQCA 
analysis, the effective pathways for power enterprises 
to achieve a green and low-carbon transition under 
different environmental and resource conditions can 
be more precisely identified, further deepening the 
understanding of the internal mechanisms by which 
digitalization drives corporate green transitions. 
Therefore, combining these two methods allows for a 
quantitative analysis through PLS-SEM to understand 
the independent and joint effects of various factors and 
a qualitative comparison through fsQCA to identify 
effective pathways and key conditions under different 
scenarios, thereby increasing the depth and breadth of 
the study.

Results

PLS-SEM Analysis

Measurement Model

The evaluation of the measurement model is a 
critical first step in assessing the quality of the PLS-
SEM research model. This study evaluates the model 
quality from three aspects: reliability, convergent 
validity, and discriminant validity. First, regarding 

reliability, Cronbach’s α values and composite reliability 
(CR) values of all measurement variables in this study 
are greater than 0.7, meeting the required standards [50]. 
This indicates that the selected measurement variables in 
this study have good reliability. Second, for convergent 
validity, the average variance extracted (AVE) is used 
as the primary assessment metric. The AVE values 
for all measurement variables in this study exceed 
the minimum threshold of 0.5 [50], indicating that all 
variables in the model possess good convergent validity. 
Lastly, concerning discriminant validity, all variables 
in this study largely meet the required standards.  
The evaluation of the measurement model for each 
variable is shown in Table 2, enabling the subsequent 
structural model analysis.

Structural Model

This study evaluates the structural model of 
PLS-SEM using three key indicators: the coefficient 
of determination (R²), cross-validated redundancy 
(Q²), and effect size (f²) [51]. First, the coefficient of 
determination (R²) represents the amount of variance in 
the endogenous constructs explained by the exogenous 
constructs, serving as an indicator of the model’s 
explanatory power. In this study, the R² value for Green 
and Low-Carbon Transition (GLT) is 0.737, and the 
adjusted R² value is 0.729, which exceeds the standard 
of approximately 0.670 that Chin considers indicative 
of high explanatory power [51]. This suggests that the 
model has strong explanatory power for GLT in power 
companies. Second, the Q² value of the structural 

Table 2. Reliability and validity indices.

Constructs Items Loadings Cronbach’s α CR AVE

Application degree of Green and low-carbon 
Technologies

(AGT)

AGT1 0.906

0.811 0.876 0.639 
AGT2 0.762

AGT3 0.751

AGT4 0.769

Relative Advantage
(RA)

RA1 0.776

0.737 0.835 0.559 
RA2 0.753

RA3 0.742

RA4 0.718

Transition Cost
(TC)

TC1 0.760

0.828 0.881 0.650 
TC2 0.880

TC3 0.812

TC4 0.767

Employee Engagement
(EE)

EE1 0.813

0.724 0.845 0.644 EE2 0.793

EE3 0.802
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model should be greater than 0, with higher Q² values 
indicating greater predictive accuracy of the model.  
All Q² values in this study are greater than 0, meeting 
the requirements [50], indicating that the model  
has good predictive relevance. Finally, the effect size  
(f²) is used to determine the magnitude of the impact 
of each path in the model [46]. The effect sizes of 
Digitalization Level (DL) on AGT, EE, GTS, OP, RA, 
and SSL are all greater than 0.35, representing high 
effects, while the effects on GLT and TC are low. 
Additionally, the impact of all independent variables on 
GLT is of low effect size, as shown in Table 3. The path 
coefficient diagram of the research model is illustrated 
in Fig. 2.

Using the Smart-PLS software, this study estimated 
the significance levels of the paths through the 
Bootstrapping method with 5000 resamples[43]. As 
shown in Table 4, first, DL (Digitalization Level) has a 

significant positive effect on AGT (Application of Green 
Technology), RA (Relative Advantage), SSL (Support 
from Senior Leadership), GTS (Green Transition 
Strategy), GIT (Green Innovation Technology), OP 
(Organizational Preparedness), and EE (Employee 
Engagement) at the 0.01 level. It also has a significant 
positive effect on GLT (Green and Low-Carbon 
Transition) and TC (Transformation Cost) at the 0.05 
level. Second, based on the TOE framework, except for 
EE, OP, and CP (Competitive Pressure), which do not 
have a significant effect on GLT at the 0.05 level, the 
remaining influencing factors all significantly impact 
GLT. Among them, TC has a significant negative 
effect on GLT. Finally, regarding the mediation effects 
shown in Table 5, DL does not have a significant 
impact on GLT through EE, OP, and TC. However, 
internal organizational factors such as AGT, RA, GTS,  
and SSL partially mediate the significant positive 

Organizational Preparation
(OP)

OP1 0.781

0.764 0.849 0.585 
OP2 0.749

OP3 0.783

OP4 0.746

Green and low-carbon Transformation Strategy
(GTS)

GTS1 0.726

0.726 0.829 0.549 
GTS2 0.769

GTS3 0.741

GTS4 0.727

Support from Senior Leaders
(SSL)

SSL1 0.806

0.830 0.887 0.663 
SSL2 0.807

SSL3 0.827

SSL4 0.815

Competitive Pressure
(CP)

CP1 0.848

0.769 0.866 0.684 CP2 0.823

CP3 0.809

Policy Support
(PS)

PS1 0.767

0.754 0.844 0.575 
PS2 0.764

PS3 0.741

PS4 0.761

Digitalization Level
(DL)

DL1 0.795

0.764 0.849 0.585 
DL2 0.781

DL3 0.740

DL4 0.742

Green and Low-carbon Transformation
(GLT)

GLT1 0.760

0.707 0.820 0.533 
GLT2 0.713

GLT3 0.738

GLT4 0.707
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effect of DL on GLT, with the mediation effect of SSL  
being the strongest. This indicates that the digitalization 
level of enterprises plays a crucial role in the support 
of senior leadership for the green and low-carbon 
transition.

fsQCA Analysis

Data Calibration

Data calibration is a critical initial step in the fsQCA 
method, aiming to transform raw quantitative data 
into fuzzy set membership scores to fit the qualitative 
comparative logic of this approach. Before conducting 

fsQCA analysis, each case is assigned a value between 
0 and 1, representing the degree of membership in a 
specific set, typically categorized as “full membership,” 
“crossover point,” and “full non-membership” [52]. To 
ensure the scientific validity and applicability of data 
calibration, this study considers the specific research 
context and the actual distribution characteristics of the 
sample data. The direct calibration method is employed, 
using the 95th, 50th, and 5th percentiles as anchor 
points, as commonly used in previous studies [53], to 
distinguish the degree of membership among samples. 
Finally, the “calibrate” function in the fsQCA software 
is utilized to calibrate all raw data.

Table 3. Structural model representation effect size f2, predictive relevance, and R square.

Construct
Effect Size f²

Q² R2 R2

Adjusted
AGT EE GLT GTS OP RA SSI TC

AGT 0.024 0.363 0.589 0.588
CP 0.001
DL 1.433 0.614 0.021 1.002 1.095 1.248 1.263 0.019
EE 0.004 0.241 0.381 0.379

GLT 0.382 0.737 0.729
GTS 0.018 0.271 0.500 0.499
OP 0.002 0.300 0.523 0.521
PS 0.017
RA 0.018 0.305 0.555 0.554
SSI 0.044 0.364 0.558 0.557
TC 0.016 0.009 0.018 0.016

Fig. 2. Path coefficient diagram of the research model.
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Necessity Analysis

In fsQCA, the necessity analysis of antecedent 
conditions influencing the green and low-carbon 
transition of power companies is a prerequisite for 
configurational analysis, used to examine whether a 
particular condition is a necessary prerequisite for the 
outcome [54]. First, the necessity analysis calculates 
the coverage and consistency ratios of conditions. 
Coverage indicates the proportion of instances where 
the outcome occurs when the condition is present, 
while consistency measures the extent to which the 
outcome occurs whenever the condition is present  
[52]. As shown in Table 6, under the two 
configurations of the green and low-carbon transition  
in power companies, the consistency levels of all 
individual antecedent conditions are below 0.9, 
indicating that no single condition sufficiently explains 

the green and low-carbon transition[53], and none  
are necessary conditions. This suggests that the 
green and low-carbon transition of power companies 
is influenced by the synergistic effects of various 
conditions, necessitating further configurational 
analysis.

Configurational Results

After data calibration and necessity analysis, 
configurational analysis is the core of fsQCA, 
revealing the complex interactions between variables 
by identifying different combinations of conditions 
(i.e., “configurations”) that lead to the outcome. Unlike 
seeking a single optimal solution, configurational 
analysis emphasizes the existence of multiple possible 
causal paths. Each configuration is defined by a specific 
combination of conditions, and each combination 

Table 4. Impact effect results.

Table 5. Hypothesis testing results.

Relationship Path Coefficients T Statistics P Values Result

AGT→GIT 0.164 2.708 0.007 Significant

DT→AGT 0.767 28.378 0.000 Significant

RA→GIT 0.128 2.524 0.012 Significant

DT→RA 0.745 27.786 0.000 Significant

TC→GIT -0.066 2.05 0.040 Significant

DT→TC 0.135 2.241 0.025 Significant

EE→GIT 0.048 1.117 0.264 Not significant

DT→EE 0.617 15.016 0.000  Supported

OP→GIT 0.042 0.741 0.459 Not significant

DT→OP 0.723 22.737 0.000 Significant

GTS→GIT 0.113 2.437 0.015 Significant

DT→GTS 0.707 23.63 0.000 Significant

SSI→GIT 0.216 3.172 0.002 Significant

Hypotheses  Relationship Path Coefficients T Statistics P Values Result

H1 DT→GIT 0.137 2.608 0.009 Supported

H2a DT→AGT→GIT 0.126 2.733 0.006 Supported

H3a DT→TC→GIT -0.009 1.376 0.169 Not Supported

H3b DT→EE→GIT 0.029 1.094 0.274 Not Supported

H3c DT→OP→GIT 0.030 0.737 0.461 Not Supported

H3d DT→GTS→GIT 0.080 2.437 0.015 Supported

H3e DT→SSI→GIT 0.161 3.122 0.002 Supported

H4a CP→GIT 0.023 0.515 0.606 Not Supported

H4b PS→GIT 0.123 2.413 0.016 Supported
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logically constitutes a sufficient condition to explain the 
outcome [55].

First, this study uses the truth table algorithm to 
identify and simplify the key causal configurations 
leading to the successful green and low-carbon transition 
of power companies. This process iteratively simplifies 
the data to form the simplest expression of condition 
combinations, collectively constituting multiple possible 
paths to achieve the specific outcome. To ensure the 
reliability and interpretability of the combinations, this 
study sets the frequency threshold for successful green 
and low-carbon transition cases at 5 and for unsuccessful 
cases at 6, with a consistency threshold of 0.8, based 
on previous research findings [55]. By simplifying the 
logical expressions, the final configurational results of 
this study are obtained, and predictions are made based 
on the intermediate and parsimonious solutions.

This study identifies three paths for both successful 
and unsuccessful green and low-carbon transitions (as 
shown in Table 7), with overall solution consistencies 
of 0.981 and 0.970, respectively. The consistency 
of each combination within the two configurations 
exceeds 0.9, indicating strong explanatory power for 
each combination. Additionally, the overall solution 

coverage for the two configurations is 0.486 and 0.487, 
respectively, meaning nearly half of the outcomes 
can be explained by these combinations. For the 
successful green and low-carbon transition of power 
companies, besides DL (Digitalization Level), internal 
organizational factors such as AGT (Application of 
Green Technology), RA (Relative Advantage), EE 
(Employee Engagement), GTS (Green Transition 
Strategy), and SSL (Support from Senior Leadership) 
are core conditions, which is consistent with the PLS-
SEM results. For the unsuccessful green and low-
carbon transition configurations, the absence of AGT, 
RA, EE, GTS, and SSL as core conditions, along with 
the lack of PS (Policy Support), are significant factors, 
corroborating the importance of internal organizational 
factors in both configurations.

To further test the robustness of the configurational 
results, a stability test was conducted by adjusting the 
consistency threshold from 0.8 to 0.85. Comparative 
analysis of the results before and after the adjustment 
shows consistent findings, indicating the high reliability 
of the study’s results.

Table 6. Necessity analysis of single conditions.

Conditions
Successfully achieving GLT Failed to achieve GLT

Consistency Coverage Consistency Coverage

AGT 0.792 0.856 0.520 0.456 

~AGT 0.496 0.561 0.835 0.765 

RA 0.778 0.858 0.505 0.452 

~RA 0.503 0.557 0.842 0.755 

TC 0.667 0.741 0.611 0.550 

~TC 0.595 0.654 0.712 0.634 

EE 0.802 0.820 0.567 0.470 

~EE 0.481 0.578 0.782 0.762 

OP 0.766 0.851 0.516 0.464 

~OP 0.517 0.569 0.834 0.743 

GTS 0.825 0.821 0.559 0.451 

~GTS 0.448 0.556 0.778 0.783 

SSL 0.804 0.855 0.525 0.453 

~SSL 0.485 0.558 0.832 0.775 

CP 0.803 0.822 0.550 0.457 

~CP 0.470 0.563 0.786 0.763 

PS 0.782 0.861 0.532 0.474 

~PS 0.523 0.579 0.844 0.758 

DL 0.848 0.841 0.555 0.446 

~DL 0.441 0.551 0.801 0.810 



Siyu Li, Hongjun Zhao12

Discussion

Main Findings

The results indicate that, first, the digitalization 
level of power enterprises positively impacts the 
implementation of green and low-carbon transitions 
(H1). As shown in Table 4, the digitalization level 
significantly increases the application of green and 
low-carbon technologies and further enhances the 
relative advantage of green and low-carbon transitions 
in power enterprises, with T-values of 28.378 and 
27.786, respectively, ranking first and second among all 
significant influencing resource elements. This indicates 
that green and low-carbon technologies and relative 
advantages play key roles in the implementation of low-
carbon transitions in enterprises [26, 37]. Furthermore, 
as shown in Table 5, the digitalization level positively 
impacts the green and low-carbon transition of power 
enterprises by enhancing the application of green 
and low-carbon technologies and relative advantage, 
indicating partial mediation of these factors in the 
digitalization process (H2a and H2b). This demonstrates 
that the impact of digitalization on the green and low-
carbon transition of enterprises primarily operates 
through the promotion of low-carbon technologies and 
the enhancement of low-carbon advantages.

Previous literature also supports this conclusion, 
as the role of digitalization in promoting low-carbon 

transitions has been demonstrated in the manufacturing 
industry [37]. For example, Hou et al. (2023) found 
that the digital transformation of the manufacturing 
industry significantly positively impacts low-carbon 
technology innovation, serving as a critical driving 
force for such innovation[26], and the same applies to 
power enterprises. Particularly in the current context 
of sustainable and high-quality development, the power 
industry urgently needs digitalization to drive green and 
low-carbon transitions.

Subsequently, in the organizational resource 
dimension, as shown in Tables 4 and 5, although 
transformation costs have a statistically significant 
negative impact on the green and low-carbon transition 
of power enterprises, the hypothesis that digitalization 
positively affects this transition by reducing costs (H3a) 
is not supported. Additionally, the digitalization level of 
enterprises significantly increases green transition costs, 
which contradicts the theoretical analysis suggesting 
that digital transformation can reduce these costs. This 
indicates that, under current conditions, despite efforts 
by governments and enterprises to promote digital 
transformation, the green and low-carbon transition 
remains a financial burden for enterprises, especially in 
low-carbon technologies [33]. Digitalization has yet to be 
deeply embedded in production and operations to realize 
cost efficiencies. Moreover, employee engagement and 
organizational preparedness do not significantly impact 
the low-carbon transition of power enterprises and do 

Table 7. Green and low-carbon transformation configuration results.

Antecedent condition
Successfully achieving GLT Failed to achieve GLT

S1 S2 S3 F1 F2 F3

AGT ● ● ●   

RA ● ● ●   

TC ● ●  

EE ● ● ●  

OP ● ●   

GTS ● ● ●   

SSL ● ● ●   

CP ● ● ●  

PS ● ●   

DL ● ● ●   

Raw coverage 0.369 0.381 0.449 0.507 0.451 0.446

Unique coverage 0.013 0.025 0.093 0.077 0.021 0.015

Consistency 0.979 0.984 0.987 0.975 0.967 0.967

Overall Solution Coverage 0.486 0.487 

Overall Solution Consistency 0.981 0.970 

Note:● = core condition present. ● = peripheral condition present.  = core condition absent.  = peripheral condition absent. Blank 
spaces = condition may be either present or absent.
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not mediate the effect of digitalization on this transition; 
thus, H3b and H3c are not supported. Chen et al. (2024) 
found that digital transformation positively impacts 
the carbon performance of industrial enterprises and 
that talent mediates the relationship between digital 
transformation and carbon performance, affecting 
carbon reduction outcomes [56]. Therefore, compared to 
general employee engagement, low-carbon talent with 
specific skills and awareness may play a more crucial 
role in the low-carbon transition of power enterprises. 
The insignificance of organizational preparedness may 
be due to the disruptive nature of green and low-carbon 
transitions on existing organizational structures, which 
forces changes in established behavioral patterns, thus 
creating potential obstacles and reducing the positive 
impact of organizational preparedness on the transition. 
This phenomenon has also been observed in the 
digital transformation of construction enterprises [12]. 
Regarding green and low-carbon transition strategies 
and top leadership support, H3d and H3e are both 
supported. Notably, H3e has the highest T-value of 
3.122 among all ten hypotheses. This indicates that 
top leadership support plays the most critical role in 
digitalization, promoting the green and low-carbon 
transition of power enterprises. Sheng et al. (2021) 
also found that the ambivalence of CEOs can weaken 
the impact of digital transformation on the low-carbon 
operational management practices of enterprises [39].

Finally, in the external environmental resources 
dimension, competitive pressure does not significantly 
impact the green and low-carbon transition of power 
enterprises, and H4a is not supported. However, policy 
support has a significant positive impact on the green and 
low-carbon transition of power enterprises, supporting 
H4b. The possible reason is that China’s power 
enterprises are government-affiliated with low levels 
of market competition. Compared to market regulation, 
government macro-guidance and policy directives are 
the key drivers for the green and low-carbon transition 
of power enterprises [57]. The government can guide or 
encourage relevant low-carbon practices in enterprises 
through various policies in the power and carbon 
markets, such as peak-valley electricity pricing, carbon 
emission trading rules, and carbon emission quota 
allocation rules [33].

Based on the above analysis, it can be found that 
although the PLS-SEM method reveals the impact 
of different resource elements on the green and low-
carbon transition, particularly the mediating effects 
of digitalization in promoting the green and low-
carbon transition of power enterprises, it still does not 
clearly answer how digital transformation interacts 
through these different resource elements to achieve the 
green and low-carbon transition of power enterprises. 
Therefore, it is necessary to discuss the green and low-
carbon transition from the perspective of configuration 
matching based on resource orchestration theory. The 
configuration results indicate that three paths (S1, S2, 
and S3) can successfully achieve the green and low-

carbon transition of power enterprises, all driven by 
internal resources (Table 7). Specifically, in addition to 
the application of green and low-carbon technologies, 
relative advantage, green and low-carbon transition 
strategy, top leadership support, and digitalization 
level, employee engagement is also a core condition in 
all three paths. This indicates that although employee 
engagement does not significantly impact the green and 
low-carbon transition of power enterprises or mediate 
the relationship between digitalization and the green and 
low-carbon transition, it remains a core condition from 
the configuration perspective.

Furthermore, this suggests that under the joint 
interaction of internal and external resource elements, 
employees, as the fundamental human resources of 
enterprise productivity, their level of engagement in the 
low-carbon transition remains an indispensable resource 
element for achieving a green transition. The degree of 
employee engagement reflects their sense of corporate 
identity and value regarding green and low-carbon 
transition efforts, thereby affecting the implementation of 
various green and low-carbon transition tasks. Previous 
studies have also indicated this situation [56]. Secondly, 
in the three paths that successfully achieve the green and 
low-carbon transition of power enterprises, the resource 
elements of transformation costs, organizational 
preparedness, competitive pressure, and policy support 
are marginal or potentially absent. This indicates that 
internal resource elements are particularly important 
for a successful green and low-carbon transition, with 
the application of low-carbon technologies and top 
leadership support often being key [58].

In the three paths where the green and low-carbon 
transition of power enterprises was not successfully 
achieved (F1, F2, and F3), it can be seen that besides 
the absence of core internal resource elements, the lack 
of policy support is a key factor leading to the failure of 
the green and low-carbon transition. Since current green 
and low-carbon transitions are more about fulfilling 
corporate social responsibility and responding to calls 
for action, it is difficult to bring economic benefits to 
enterprises in the short term [59]. Especially for state-
owned power enterprises, without policy support, it is 
challenging for enterprises to have the motivation and 
willingness to proactively engage in green and low-
carbon transitions [31], which is consistent with the 
previous conclusions from the PLS-SEM analysis. 
Therefore, the successful green and low-carbon 
transition through digitalization often depends on 
internal leadership support and the deep application of 
technology. Without policy support and encouragement, 
the green and low-carbon transition is unlikely to be 
achieved.

Research Implications

The research findings provide crucial insights 
for government policy-making. The government 
should enhance the promotion and support of digital 
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technologies in the power industry, formulating policies 
to encourage investment and application of digital 
technologies. Measures may include financial subsidies, 
tax incentives, and low-interest loans to reduce digital 
transformation costs. Additionally, improving digital 
infrastructure, especially in remote and resource-
scarce areas, ensures balanced development of digital 
transformation among power enterprises. Strengthened 
supervision and guidance should ensure the application 
of digital technologies aligns with national green and 
low-carbon development goals and environmental 
standards. The government should improve and optimize 
carbon market mechanisms by formulating flexible 
and effective carbon trading rules and quota allocation 
systems, encouraging carbon reduction through 
technological innovation, enhancing the economic 
benefits and sustainability of the green and low-carbon 
transition, and ensuring equitable benefits from digital 
transformation.

Industry stakeholders, particularly top leaders, should 
recognize the importance of digital transformation 
in achieving green and low-carbon development and 
actively implement digital strategies with the necessary 
resources. Enterprises should invest in low-carbon 
technology innovation, introducing advanced digital 
technologies to enhance their application and relative 
advantage, thus boosting market competitiveness. 
Employees, as key resources for the green and low-
carbon transition, should receive training and incentives 
to enhance their low-carbon awareness and skills, 
boosting participation and creativity. Additionally, power 
enterprises should collaborate with the government, 
academia, and non-governmental organizations to 
advance green and low-carbon technology research and 
application. Participating in government green policy 
and industry standard formulation allows enterprises to 
gain policy support and establish a green development 
benchmark. Finally, investors should focus on and invest 
in enterprises with strong digitalization and green and 
low-carbon transition prospects for long-term returns.

Conclusions

With digitalization and greening becoming 
mainstream, traditional power enterprises urgently need 
to transition to green and low-carbon practices to address 
the escalating climate crisis and achieve sustainable, 
high-quality development. This study first identified ten 
internal and external organizational resource elements 
that might affect the green and low-carbon transition 
of power enterprises based on the TOE framework. 
Combined with resource orchestration theory, a research 
model for the green and low-carbon transition of 
power enterprises driven by digital transformation was 
constructed. Next, PLS-SEM was employed to analyze 
nine types of green and low-carbon resources, revealing 
that seven significantly impact the green and low-carbon 
transition. Further analysis revealed that four internal 

organizational resource elements—green and low-
carbon technology application and relative advantage in 
the technical resource dimension, and green and low-
carbon transition strategy and top leadership support 
in the organizational resource dimension—mediate the 
effect of digitalization on the green and low-carbon 
transition of power enterprises. Among these, top 
leadership support is the key resource element. Finally, 
using fsQCA to orchestrate ten types of green and low-
carbon resources, it was found that power enterprises 
can achieve green and low-carbon transitions through 
three "internal resource-driven" paths. The failed green 
and low-carbon transition paths revealed that the lack 
of policy support often leads to transition failure. In the 
Chinese context, external policy support and assistance 
are crucial for the success of green and low-carbon 
transitions. This addresses the challenge of how power 
enterprises can leverage green and low-carbon resources 
to achieve low-carbon transitions in a digitalization 
context.

This study has some limitations that need to be 
addressed in future research. Firstly, the PLS-SEM 
and fsQCA methods selected in this study are limited 
by the data sourced from questionnaires, which may be 
subject to respondent bias and may not fully reflect the 
actual green and low-carbon practices of enterprises. 
Future research could consider using panel data from 
publicly listed companies or statistical yearbooks to 
enhance the comprehensiveness and reliability of the 
study. Additionally, while this study used the TOE 
framework and resource orchestration theory, future 
studies could incorporate theories from other fields 
for broader insights. Finally, due to the differences 
in economic development levels, energy structures, 
and environmental regulations across regions, future 
research could explore transformation paths from a 
regional differences perspective.
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