
Introduction

Water-fractured sandstone is a common phenomenon 
in China, which is most likely resultant of the origins 

of the water supply, mineral exploitation, water 
conservation activities, hydropower construction, urban 
and industrial projects, road construction, and the daily 
life activities of human beings. In particular, sandstone 
aquifers pose a water inrush threat to coal seams [1, 
2]. For instance, the coal seams in coal mines that are 
found in the sandstone strata in cities or provinces in 
East China face the risk of water inrush from sandstone 
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Abstract 

A good understanding of the spatial and temporal variations of the hydrochemical characteristics 
of sandstone aquifers is essential for quality assessments of the groundwater. This paper investigates 
the spatial-temporal changes in the characteristics of water from sandstone aquifers in an 
underground mine, including its hydrochemistry and quality. Based on multi-criteria decision-making  
and a geographic information system, a water quality index of the water from sandstone aquifers 
is established by combining ordered weighted averaging and maximizing the deviation in a GIS 
environment. It is argued that mining activities affect the hydrochemical characteristics and water 
quality. The method is validated through a case study of the Chensilou coal mine in Henan Province, 
China, in which the spatial and temporal changes of the water quality in the sandstone aquifers from 
2001 to 2016 are analyzed, and the factors that affect the water quality are elaborated. It is found that 
from 2001 to 2016, which is known as the “golden decade” of coal production, the water quality was 
better in 2001, which is basically in agreement with the distribution of the elements found in the natural 
hydrochemistry of the groundwater. In 2006, the chemical composition of the groundwater water 
changed due to a large amount of human-induced activities, so that the hydrochemistry of the phreatic 
water was more complex than that of the confined water. The groundwater quality in the studied area 
gradually improved in 2016 due to investments that restored the environmental balance, and the water 
quality in the sandstone aquifers was improved as opposed to the situation in 2006.
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aquifers. Thus, the control and management of water 
inrush from sandstone aquifers should be taken into 
account for the safety of the mine workers. Water 
from sandstone aquifers, which is an important source 
of groundwater, can be used as a water supply for the 
urban population. The spatial and temporal variations 
of the characteristics of water from sandstone aquifers 
and the management of water in underground mining 
areas are important factors to be considered in order 
to better develop and utilize such water and facilitate 
environmental improvements in water management 
measures [3-5].

In 1975, international research on leached 
groundwater began to develop vigorously, which focused 
on the spatial-temporal evolution of groundwater 
hydrochemistry [6-8]. In recent years, the spatial-
temporal evolution of groundwater has been a popular 
topic and widely studied, and studies have focused 
on the dynamic groundwater resources, groundwater 
hydrochemistry, and the quality of groundwater. Here, 
we focus on the chemical composition of groundwater, 
which is influenced by the long-term effects of human 
activities and natural effects [9-11]. Gourdol et al. [12] 
proposed a new statistical method called Partial Triadic 
Analysis to characterize the spatial and temporal 
variations of the hydrochemistry of groundwater due 
to natural causes and human activities. Descriptive 
statistics of the spatial and temporal changes of the 
hydrochemical characteristics of groundwater are 
usually applied through two means: the use of ratios of 
major ions and piper diagrams [13, 14]. The principal 
component analysis is a common multivariable analysis 
method that can be used to verify the principal chemical 
factors [15-17]. 

The evaluation of water quality is not only 
an important component of research work on the 
water environment, but also an important basic task 
for environmental risk analyses, ensuring water 
environmental protection, and controlling pollution. 
Water quality is a generic term to denote the amount 
of physical, chemical, bacterial, and other harmful 
substances in groundwater [18-20]. Horton [21] was the 
first to propose an index number system to evaluate 
water quality. Today, the quality of groundwater has 
become a global concern due to its effects on all life 
forms and the environment [18]. Sheikhy Narany et al. 
[22] used a geostatistical analysis to evaluate the spatial 
and temporal variations in the quality of groundwater. 
The above studies have identified the main factors 
affecting groundwater pollution and found that different 
natural processes and human activities are the main 
sources that contribute to the salinity as well as hardness 
and microbial contamination of the groundwater. 
Masoud et al. [23] examined the spatial-temporal 
trends and factors of change in groundwater quality 
by studying the temporal and spatial variations of 
pollutants that originate from the degradation of organic 
matter, whether they are from peat deposits in natural 
aquifers or due to improper protection of wellheads from 

contamination in urban areas or through agricultural 
drainage in areas with low relief topography. 

     Geographic information systems (GIS), which 
collect, access, integrate, process, analyze, and 
display all kinds of characteristic information and 
carry out spatial analysis, have been widely used to 
characterize and assess the spatial-temporal changes 
in groundwater quality [24, 25]. Machiwal et al. [26] 
analyzed the spatial-temporal changes in the parameters 
of groundwater quality by using a GIS-based index. 
However, there is limited research work to determine 
spatial-temporal trends by monitoring groundwater 
quality, and even if so, it is a challenging task because 
the meteorological, hydrological, and anthropological 
effects on groundwater can be isolated or coupled, and 
these effects have different intensities. At the same time, 
it is also a very significant work to judge the spatial-
temporal evolution of groundwater quality in the whole 
region.

Therefore, spatial statistical interpolation and 
multivariate statistical analysis based on GIS are 
carried out in this study to extract the spatial and 
temporal variations of the characteristics of water from 
sandstone aquifers, including the hydrochemistry and 
quality in an underground mine area. Moreover, the 
factors that contribute to the variations are analyzed.  
The objectives of this research are to therefore:  
(1) analyze the spatial and temporal changes of the 
hydrochemistry of sandstone aquifers in an underground 
mine called the Chensilou coal mine in Henan Province, 
China, from 2001 to 2016, and (2) quantitatively 
evaluate the quality of groundwater with a GIS. This 
study is expected to provide the theoretical basis for 
exploring the relationship between the quality of water 
in sandstone aquifers and mining activities and finding a 
hydrological balance in the mining area. 

Method

The multi-criteria decision-making (MCDM) 
method was used to confirm the optimal water 
quality index for evaluating the quality of water in 
the sandstone aquifers of the Chensilou coal mine.  
The weighted linear combination was used as an 
analysis method [27] and therefore used as the decision 
model to generate composite maps in a GIS [28, 29]. 
The maximum deviation approach was used to compute 
the weight vectors. 

(1) Building a decision matrix (DM) for water quality
A DM A = (aij)nm, which includes the primary 

criteria that control the water quality, was constructed 
in accordance with the GBT14848-93: National Standard 
of the People’s Republic of China: Quality Standard 
for Groundwater, in which aij is the ith value of the jth 
criteria and m and n are the rows and columns of the 
DM, respectively. Meanwhile, the GIS layer of the main 
criteria was built by applying the kriging method in 
ArcGIS, which is mapping software. 
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(2) Normalizing the GIS layer and DM 
Usually, some of the criteria in MCDM have clear 

proportional relations with the evaluated objects, which 
are known as benefit type criteria. The other criteria are 
called cost type criteria. Different types of evaluation 
criteria will have different dimensional units. Therefore, 
this will have effects on the data analysis results. To 
remove the influences of dimension between different 
indexes, normalizing the data is necessary to allow 
comparability of different criteria. After the data are 
normalized, they can then be used for careful decisions. 
Consequently, each criteria value aij undergoes 
normalization, and normalization on thematic maps 
is implemented with the use of the following formulas 
below:
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where A1 is the positive type of evaluation criteria and A2 
is the negative type of evaluation criteria. Subsequently, 
a normalized matrix for water quality R = (rij)nm and 
thematic maps for decision-making with no dimensions 
are created.

(3) Establishment of weight vectors based on 
variance

Variance is the most important and commonly used 
index to measure the degree of variability of data. It 
is generally believed that if there is no discrepancy in 
the indicators of each level of the evaluated object, the 
criteria are irrelevant to the ranking of the different 
levels of the evaluated object in MCDM. For the 
factor uj, σij (w) represents the deviation between the 
discrepancy levels of the evaluated object xi and all the 
discrepancy levels of the evaluated object:
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The weight vector w is obtained, and the total 
deviation of all the discrepancy ranked levels of the 
evaluated object with respect to all the criteria is 
maximized. Next, the objective function is:
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The optimization model below is used to derive the 
weight vector w:
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A Lagrange function is constructed to solve Equation 
(5):
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Solving partial derivative:
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from which we have:
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Then, the λ and wi can be obtained:
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(4) Water quality index of sandstone aquifers based 
on ordered weight average operator

Ordered weighted averaging (OWA) generalizes  
and extends the weighted linear combination method 
[30-32] and has now been extended to GIS applications. 
The OWA family uses two sets of weights, which are 
criteria of importance and order. When an ordered 
weight average operator is used, the set of criterion 
importance weights is defined as: V=｛v1, v2, …, vi｝and 
the set of order weights is: W=｛w1, w2, …, wj; 0≤wn≤1, 

and 
1

1
n

j
i

v
=

=∑ ｝. The set of attribute values is defined 
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as: A = ｛ai1, ai2, …, ain｝, where ain is at the ith site of n 
criterion maps set denoted by using raster:

 1

n

i j ij
i

OWA v z
=

=∑
 (10)

The attribute values ai1, ai2, …, ain are reordered 
by ranking weights in ascending order, and then the 
sequence zi1, zi2, …, zin is obtained. The criterion weight 
vn is not affected by the attribute value ain; however, vn is 
related to the certain ordered position of an aggregated 
value. When the reordered weights determined by the 
attribute value are combined with a set of order weights, 
then aggregation by the ordered weight average operator 
is realized.
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The Boolean overlay operations of intersection 
(AND) and union (OR) are included in OWA in GIS 
applications, which are the two extremes that are used 
to describe the minimum and maximum operators; that 
is, the circumstances in which every criterion is satisfied 
and only one criterion is satisfied, respectively (Table 1). 

The degree of ORness and trade-off can be used to 
describe the ordered weight average operator behaviors. 
The order weights determine the level of trade-off among 
the criteria. The continuous aggregation procedure is 
affected by changes in the order weights. Then, ORness 
can be defined as:
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where n denotes the number of criteria, wk denotes the 
weight of the criterion in the kth order, and k denotes the 
order of the criteria. The degree of similarity between 

the ordered weight average and AND is determined 
by the ANDness, and that between the ordered 
weight average and OR is determined by the ORness. 
Compensation is measured by the level of TRADE-OFF, 
which is determined by the degree of the dispersion 
of the weights. Then, the water quality index of the 
sandstone aquifers (SWQI) can be defined as:
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where wj is the criterion weight, vj is the order weight, 
zi1≤zi2≤…≤zin is the sequence obtained by reordering the 
weighted attribute values ai1.

Case Study

Hydrogeological Background

The Chensilou coalmine is in the Chensilou county, 
which is 10 km north of Yongcheng city in Henan, a 
province in China (Fig. 1). The study area is a well-sealed, 
independent hydrogeological unit. Due to the closed 
independence of hydrogeological units and the loss of 
normal hydraulic connection with regional aquifers, the 
possibility of regional groundwater recharge is reduced. 
The distribution and burial conditions of deep water are 
related to ancient topography, the landforms, and the 
subsidence of tectonic movement. The fractured water 
in the sandstone is directly recharged by precipitation, 
diving, and surface water in the exposed area. In the 
cover area, the bottom loose pore pressure water may 
supply groundwater along the wind oxidation zone or 
the later coal mining subsidence zone, and the long-term 
drainage of the production mine is the main discharge 
channel of the fractured water. The fractured water 
of sandstone is covered by the cover layer, and the 
groundwater is in a closed environment. In the natural 
state, the dynamic changes are not great, and the water 
level decline is mainly affected by the drainage of 
the production mine. The geological structure in the 
studied area is a monocline that strikes north-north-west 
(NNW) with a slight dip to the south-west-west (SWW).  
The geological structure of the deposits that run 
E-W and N-S is significantly different. In the former,  
the faults dominate the geological structure, and  
in the latter, the folds are dominant while the faults  

Table 1. Typical linguistic quantifying operators corresponding to operator factors.

Quantifier operator At least one Few Some Half Many Most All

A 0.0001 0.1 0.5 1 2 10 1000

OWA weight (vj) v1 = 1, vj = 0 a a vj=1/n a a vn = 1, vj = 0

ORness 1 a a 0.5 a a 0

Tradeoff 0 a a 1 a a 0
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are secondary. A single horizontal coal seam in the 
north and south zones was mined by longwall caving 
with a longwall retreat system.

Three sandstone aquifers are found above Coal 
Seam Ⅱ2: the upper Shihezi, lower Shihezi, and Shanxi 
aquifers (Fig. 2). The Shanxi aquifer flows directly into 
the coal mine. Fractures in the sandstone have not yet 
developed. Before mining, both recharge and discharge 
predominantly occur in the lateral horizontal direction.

Groundwater Sampling

The groundwater samples were collected from panels 
or through drilled boreholes for hydrological monitoring 
two to three times in February or April and December of 
2001, 2006, 2011, and 2016 to carry out hydrochemistry 
analyses. Ninety-eight groundwater samples were 
collected in total. The geographical location of each 
sample was recorded and pinpointed on a GIS map as 
shown in Fig. 3. A standard laboratory procedure was 
used to analyze the hydrochemical concentration of 
the collected groundwater samples. The amount of 
anions and cations were examined, including potassium 
(K+), sodium (Na+), calcium (Ca2+), magnesium (Mg2+), 
chloride (Cl-), sulfate (SO4

2-), bicarbonate (HCO3
-), 

carbonate (CO3
2-), iron II (Fe2+), iron III (Fe3+), 

ammonium (NH4
+), nitronium (NO2

-), and nitrate (NO3
-) 

ions, and the total dissolved solids, total hardness, and 
pH were also tested in the laboratory.

Results and Discussion

Real dynamic monitored data are used in this 
study, in which the characteristics of the groundwater 
environment in the studied area are taken into 
consideration. Nine indicators are used as the criteria 

Fig. 1. Map of location of Chensilou coal mine.

Fig. 2. Stratigraphic column over Coal Seam Ⅱ2.
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to assess the water quality in the sandstone aquifers: 
Na+, Ca2+, Mg2+, Cl-, SO4

2-, HCO3
-, total hardness, pH, 

and total dissolved solids. Na+, Ca2+, Mg2+, Cl-, SO4
2-

, and HCO3
- are the most common chemical elements 

in groundwater. The total hardness refers to the 
concentration of total calcium and magnesium ions 
in water, the pH value is the meaning of the pH of 
water, and the total dissolved solids refer to the total 
amount of solid matter that can be dissolved in water. 
These indicators are interrelated to reflect the chemical 
characteristics and potential impacts of water quality. 
The tradeoff range is 0 to 1. A value of 0 indicates 
that there is no tradeoff between standards, whereas a 
value of 1 means that there is a complete compromise.  
In other words, this measure is the degree of the 
dispersion of the weights of the OWA. In the weighted 
linear combination model, the average decision risks  
a = 1, so that, for example, the weight coefficient has an 
appropriate evaluation result from the change in weight, 
which will meet the needs of the decision-makers  
(Table 2).

First, the factor that is used to assess the water quality 
in sandstone aquifers is normalized in accordance with 
Eq (1). Then the map of each factor that affects the water 
quality is obtained by using GIS as shown in Figs. 4, 5, 
6, and 7.

The distribution map of the water quality index of 
the sandstone aquifers for 2001, 2006, 2011, and 2016 
is drawn with ArcGIS based on the ordered weight 
average operator, as shown in Figs. 8a1, 8a2, 8a3, and 
8a4, respectively. The water quality is categorized 
into five different levels in accordance with the water 
quality index of the sandstone aquifers and natural 
breaks method [33], which clusters data into different 
arrangements with reference to the natural breaks found 
in the data, as shown in Table 3. 

The chemical changes in the water from the 
sandstone aquifers in the studied area in 2001 
are basically consistent with the changes in the 
hydrochemistry of the natural water. The fourteen years 
from 2002 to 2016 are known as the “golden decade” of 
coal production, in which the industry was booming. In 

Fig. 3. Location of sampling stations and elevation of upper sandstone aquifers.

Table 2. Illustrative example of OWAi.

Factor Ordered factor Ordered factor weight
Ordered weight, vj

a = 0 a = 1 a = 1000

2 1 0.086 1 0.086 0

5 2 0.102 0 0.102 0

1 3 0.096 0 0.096 0

3 4 0.115 0 0.115 0

4 5 0.134 0 0.134 0

6 6 0.083 0 0.083 0

9 7 0.127 0 0.127 0

8 8 0.109 0 0.109 0

7 9 0.148 0 0.148 1
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Fig. 4. Flowchart and map of each criterion of water quality in sandstone aquifers in 2001. (a1) Na+; (a2) Ca2+; (a3) Mg2+; (b1) Cl-;  
(b2) SO4

2-; (b3) HCO3
-; (c1) Total hardness; (c2) pH; (c3) Total dissolved solids.

Fig. 5. Flowchart and map of each criterion of water quality in sandstone aquifers in 2006. (a1) Na+; (a2) Ca2+; (a3) Mg2+; (b1) Cl-; (b2) 
SO4

2-; (b3) HCO3
-; (c1) Total hardness; (c2) pH; (c3) Total dissolved solids.
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Fig. 6. Flowchart and map of each criterion of water quality in sandstone aquifers in 2011. (a1) Na+; (a2) Ca2+; (a3) Mg2+; (b1) Cl-; (b2) 
SO4

2-; (b3) HCO3
-; (c1) Total hardness; (c2) pH; (c3) Total dissolved solids.

Fig. 7. Flowchart and map of each criterion of water quality in sandstone aquifers in 2016. (a1) Na+; (a2) Ca2+; (a3) Mg2+; (b1) Cl-;  
(b2) SO4

2-; (b3) HCO3
-; (c1) Total hardness; (c2) pH; (c3) Total dissolved solids.
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2006, the chemical composition of the water changed, 
in which there was an increase in Ca2+, Mg2+, Cl-, SO4

2-. 
and pH. The increase in the concentrations of Ca2+, Mg2+, 
and Cl- in the water is presumed to be the dissolution 
of sulfate and stone salt, while the increase in the 
concentration of SO4

2- is presumed to be caused by the 
accelerated oxidation of pyrite caused by human mining. 
In the process of mining, in order to ensure the smooth 
progress of the project, artificial grouting is needed, and 
alkaline substances formed after the hydration reaction 
of the grouting material cement will cause the pH value 
of groundwater to rise. The influence of the natural 
environment was greatly reduced, and the ecological 
environment changed due to a large amount of human-
induced activities such as manufacturing, mining, and 
construction of infrastructure, which produced different 
types of pollutants, as evidenced by the changes in total 

dissolved solids. Then there was also the direct impact 
of such human-induced activities on the chemical 
composition of the water due to the changes in the large-
scale exploitation of the hydrodynamic system, as well 
as groundwater recharge, runoff, and discharge. 

In 2011, the studied area grew in population and 
economy, and the effects of such growth had detrimental 
effects on the water. The hydrochemistry of the 
groundwater changed substantially. At the end of the 
“golden decade” of coal production, investment was 
made to restore the environmental balance by market 
economy, so that in 2016, the quality of the water in the 
sandstone aquifers almost reverted back to the chemical 
balance of natural water as shown in Fig. 9.

Conclusions

In this paper, spatial statistical interpolation 
and multivariate statistical analysis based on GIS 
are undertaken to extract the spatial and temporal 
variations of the characteristics of water from sandstone 
aquifers, including the hydrochemistry and quality in 
the underground mining area of Chensilou in China.  
A water quality index is established by using OWA and 
maximizing the deviation in a GIS environment. The 
most prosperous years of mining, otherwise known as 
the “golden decade” of coal production in this area, 
were from 2001 to 2016. In the beginning, from 2001 
to 2006, there were minimal effects on the water’s 
hydrochemistry. However, starting in 2006, human-
induced effects on the water evidently increased, 
with further growth in population and economy in 
2011, which had detrimental effects on the water. 
Not only did the chemical composition change, but 
the hydrochemistry of the groundwater also changed 
greatly. However, in the end, it is also humans  
who made the investment to revert the water almost 
back to the chemical balance of natural water. The water 
quality evaluation based on multi-criteria decision-
making and a geographic information system can better 
judge the spatial-temporal evolution of water quality 
in the mine study area. In the future, the water quality 
evaluation will be further enriched, and trace elements 
and D, 18O isotopes will be introduced into the water 
quality index.

Fig. 8. Water quality index of sandstone aquifers for 2001, 2006, 2011 and 2016 . (a1) 2001; (a2) 2006; (a3) 2011; and (a4) 2016.

Level of water quality Water quality index of sandstone 
aquifers (SWQI)

Ⅰ SWQI>0.802

Ⅱ 0.535< SWQI ≤0.682

Ⅲ 0.352< SWQI ≤0.535

Ⅳ 0.183 < SWQI≤0.352

Ⅴ 0 < SWQI≤0.183

Fig. 9. Level of water quality of sandstone aquifers from 2001 
to 2016.

Table 3. Level of water quality in studied area.
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