
Introduction

As global climate change and sustainable development 
issues continue to heat up, the impact of urban land use on 
Carbon Emissions (CE) has gradually become a research 
hotspot in the fields of environmental science and urban 

planning [1–3]. As densely populated areas with concen-
trated economic activities, the land use pattern of cities 
directly affects the scale and structure of energy consump-
tion and CE. Traditional CE research focuses on industrial 
activities and energy consumption, but there is a lack 
of effective quantitative modeling and comprehensive 
research to analyze the factors affecting urban land use 
carbon emissions (LUCE). In recent years, the Log Mean 
Divisia Index (LMDI) model has attracted attention due to 
its wide application in energy economics, and the model 
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Abstract

To understand the carbon emission influencing factors of urban land use, the study improves 
the Kaya equation by analyzing the time-series characteristics of carbon emission from land use 
and combining it with the improved logarithmic mean division index model to analyze the influencing 
factors. From the results, the per capita and total carbon emissions from construction land in Shenyang 
city show an increasing trend in the initial period, followed by a gradual decrease. From 2019 to 2022, 
the net carbon emissions of Shenyang city decreased from 3165.79*104 tons to 2614.77*104 tons, show-
ing a decreasing trend in this time period. The emission intensity was ranked as construction land, 
forest land, arable land, grassland, and water. The influencing factor analysis shows that the emission 
intensity per unit of land has significant inhibitory effects on carbon emissions, with a total contribution 
of -769.64*104 tons, while GDP per capita and population size become the main factors driving carbon 
emissions. This suggests that future environmental policies should focus on the transformation of eco-
nomic development modes and the control of population growth. The research method can effectively 
analyze the impact of various influencing factors on carbon emissions.

Keywords: LMDI model, carbon emissions, urban land use, time series characteristics, extreme method, 
Kaya’s equation

Qiao Cui, et al.



Qiao Cui, et al.2

shows unique advantages in analyzing the driving fac-
tors of energy consumption and CE because of its high 
decomposition accuracy and the imperfect residual terms 
[4–6]. Therefore, to better analyze the CE influencing 
factors of urban land use, the study takes Shenyang city 
as an object, and on the basis of analyzing the time se-
ries characteristics of its LUCE, it improves the LMDI 
model through the limit method to analyze the influenc-
ing factors of the city’s LUCE, with the aim of providing 
a more scientific and empirical basis for urban layout 
and low-carbon development. Through this approach, 
the study not only enriches the theoretical framework 
of the relationship in the LUCE, but also provides new 
perspectives and tools for the formulation of urban sus-
tainable development strategies. The study has four parts. 
The first part is a literature review, which introduces 
domestic and international scholars’ research on urban 
CE and LMDI modeling. The second part conducts re-
search on the time-series characteristics of urban LUCE 
and the influencing factors. In the third part of the re-
sults analysis, the study specifically analyzes the LUCE 
time-series characteristics, influencing factors, and so on. 
The fourth part summarizes the research methodology 
and other contents and points out the research deficiencies 
and future research directions.

Related Work

High CE is a major issue for humanity today 
and in the future. One of the main causes of climate 
warming is land use change, which is mostly due to hu-
man activities. The analysis of LUCE in cities, which are 
the main areas of human activities, it is meaningful for 
low carbon development. Pan et al. In order to analyze 
the impact of urban growth and sprawl on GHG, they 
proposed the use of the interactive, spatially explicit 
socio-ecological system modeling methodology. Taking 
Stockholm County in Sweden as an example, the total 
emissions predicted by the designed strategy are larger 
than those in the official action plan, which is beneficial 
to mitigate the impact of 72% of the total emissions un-
der the effect of the developed zoning policy [7]. Chuai 
and Feng examined the spatial distribution and influenc-
ing factors of the CE using a new methodology designed 
using big data, and the CE of the city of Nanjing was 
investigated. Regional differences and influencing factors 
were analyzed at 300 m high resolution. The CE intensity 
in the central city of Nanjing varies significantly, but is 
below that in peripheral industrial areas. The increase 
in ecological land use and the decrease in development 
land use contribute to CE reduction. Industrial structure 
adjustment and energy efficiency improvement are also 
key [8]. Wu et al. analyzed data from the Minneapolis-St. 
Paul metropolitan area uses the gradient advancement 
decision tree method in order to solve the relationship 
between the built environment and CE. The results show 
that three factors have the greatest impact on CE: job 
density, land use type, and distance to the nearest transit 

stop. These factors are only valid to a certain extent, 
providing insights for planners to realize environmental 
benefits [9]. Lauvaux et al. proposed a methodology for 
integrating a dense network of greenhouse gas sensors 
with science-driven building and street scales in order to 
more accurately estimate urban fossil fuel CE. The method 
estimates CE within 3% of actual values each year. Inven-
tory emissions in Indianapolis are 35% lower than self-
reported [10]. Ribeiro et al. In an effort to more accurately 
study the relationship between urbanization and CE, they 
propose a general framework that simultaneously consid-
ers population, area, and the interaction between the two. 
The results show that the framework greatly improves 
the characterization of emissions, revealing the coupled 
effects of population and density on emissions [11].

Yang et al. analyzed using the Kaya model 
and the LMDI method to understand the CE changes 
in fossil energy consumption in China. The results show 
that the CE from 2006-2018 presents four stages, with 
gross domestic product (GDP) per capita and energy 
efficiency as the main influencing factors, respectively. 
The measures help to reduce CE, but it still needs to 
actively deal with climate change [12]. Yao et al. es-
tablished an exponential decomposition analysis-log-
averaged Divisia index model in order to understand 
the spatial and temporal differences in water intensity 
in the Yangtze River Economic Zone. The results show 
that water intensity and industrial structure are the main 
and secondary factors. Provinces should comprehensive-
ly consider policies such as improving industrial water 
utilization efficiency and industrial structure adjustment 
[13]. Chun et al. To analyze the characteristics of CE 
in Henan Province, the study established a decoupling ef-
fort model based on the LMDI method. The CE in Henan 
was added from 2006 to 2011 and declined after 2011. 
Henan has achieved a shift from weak to strong decou-
pling. Energy intensity is a crucial factor in achieving 
decoupling [14]. Abbas et al. In order to assess the fac-
tors influencing energy consumption in Punjab, methods 
such as LMDI modeling were used. The results show 
that scale impacts are the main cause of high energy 
consumption but can be reduced by efficient intensifica-
tion. Structural influences have no significant impact on 
energy use [15].

In summary, in the field of CE, although some scholars 
have discussed the study of the impact of CE and their 
environmental effects, fewer studies have been carried 
out from the perspective of different land utilization types, 
and only a single land use type has been explored. There is 
a need to increase the variety of land use types as a way to 
facilitate the analysis of the spatial characteristics of CE. 
Therefore, the study analyzes the LUCE of Shenyang city 
to explore its time-series characteristics and the influenc-
ing factors. In view of the good performance of the LMDI 
model in terms of the drivers of CE, the LMDI is applied 
in the study. Relative to previous studies, the study con-
ducts CE analysis of multiple land use types to increase 
the variety of land use types studied.
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Analysis of Factors Affecting Urban LUCE 
Based on the Improved LMDI Model

To understand the CE influencing factors of urban land 
use, the study improves the Kaya equation on the ba-
sis of analyzing the time-series characteristics of LUCE 
and combines it with the improved LMDI model to analyze 
the influencing factors.

Data Sources and LUCE Accounting Methodology

At the heart of global climate change and the ener-
gy crisis lies high CE, which is a common challenge for 
the contemporary and future world. The accumulation 
of greenhouse gases in the atmosphere stems mainly from 
changes in land use patterns caused by human activities 
[16–18]. In the process of land resources and energy use, 
China is under increasing pressure from CE. In this regard, 
to effectively study the influencing factors of urban LUCE, 
the study was carried out in the city of Shenyang. Located 
in the center of Liaoning Province, Shenyang is the capital 
city, and in terms of topography and geomorphology, its 
main landform is a plain with flat terrain. The selection 
of data was carried out, and the collection of data such 
as land-use type data and energy consumption data was 
carried out on the basis of sources such as the Shenyang 
Statistical Yearbook. The time period in which the data 
were collected was from 2015 to 2022. Based on the data 
obtained, the calculation and analysis of CE from land 
use types like arable land and garden land are carried out. 
There are differences in the impact of land use types on CE. 
According to the characteristics of various land use types, 
it can be seen that, compared with water, cropland causes 
a greater impact, which means that its CE coefficient is 
greater. According to the CE data for various land use types, 
the corresponding CE estimation is carried out. The range 
of values for the consumption of type i energy is within [1, 
5], with values 1–2 representing farmland and forest land 
and values 3–4 representing grassland and garden land, 
respectively. When the value of type i energy consump-
tion is 5, it indicates that the land type is water. The value 
of the CE factor is in the range of [1, 5]. The value of i is 
in the range of [1, 5], and the value of 1–2 indicates arable 
land and forest land, respectively, while 3 and 4 indi-
cate grassland and garden land respectively. When i takes 
the value of 5, it indicates that the land type is watershed. 
Carry out the setting of CE coefficients as shown in Table 1.

In Table 1, there are differences in the CE coefficients 
corresponding to various land use types, in which the CE 
coefficients of the other four land use types are negative 
except for the CE coefficients of arable land, which are 
0.422, while the CE coefficients of grassland are -0.950, 
and those of forest land are -0.623. Construction land, due 
to the diversity of its human activities, results in a much 
more complex CE coefficient is much more complicated 
than agricultural land and waters. Therefore, when estimat-
ing the CE of construction land, it is necessary to calculate 
indirectly based on the corresponding CE coefficients pro-
duced by the energy consumption it carries. To facilitate 
the modeling, the study chooses the actual measurement 
method under which the CE analysis of energy consump-
tion is carried out. This method is based on the net energy 
calorific value, the total amount of consumption, specific 
CE coefficients, and oxidation rates to realize an estimation 
of the actual emissions. This method is widely used for 
calculating direct CE in various industries due to its low 
data requirements and ease of operation. The study focuses 
on analyzing and calculating the emissions of carbon-
containing energy sources and does not cover other indirect 
energy sources, such as electricity, which is an indirect 
energy source. In this way, the direct CE of the relevant 
industries can be obtained. The CE from construction land 
is shown in equation (1).
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In equation (1), the CE from the construction land 
is expressed as PJ in 10,000 t, and the energy consump-
tion of the first i type carried by the construction land is 
expressed as Li in 10,000 t. δi represents the carbon emis-
sion coefficient of the i land use type. The conversion 
coefficient of the standard coal for energy is set, and it is 
expressed as Fi. Where i = 1, 2, …, 9, in this case represents 
9 types of energy consumption. CE from urban land use is 
calculated, and its mathematical representation is shown 
in equation (2).

 = +i i JCE P P  (2)

In equation (2), the urban land use CE is expressed as 
CEi. According to the data situation recorded in the Shen-
yang Statistical Yearbook for 2015–2022, it can be seen that 
there are 9 kinds of energy consumption data in the city. 
Among them, the discounted standard coal coefficients 
of these energy sources are displayed in Table 2.

In Table 2, there is a difference in the discounted stand-
ard coal coefficients corresponding to the different types 
of energy sources. Among them, raw coal has the smallest 
discounted standard coal coefficient, followed by coke, 
while gasoline has the largest discounted standard coal coef-
ficient, which takes the value of 1.7414 kg standard coal/kg. 
According to the China Energy Statistical Yearbook, the CE 
coefficients of the selected energy sources under study were 
counted to obtain the CE coefficients of different energy 
sources, as displayed in Table 3.

Table 1. CE coefficients of different land use types.

Land use type Carbon emission coefficient 
situation (TC/hm)2

Cultivated land 0.422

Woodland -0.623

Meadow -0.950

Garden -0.210

Waters -0.400
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In Table 3, there are distinctions in the CE coefficients 
corresponding to different energy types. Among them, 
the CE coefficient of crude oil is 0.5857 tc/tec, which is 
larger than that of natural gas, which has the smallest CE 
coefficient of 0.4483 tc/tec. The CE coefficient of coke is 
the largest, with a CE coefficient of 0.8550 tc/tec, while that 
of raw coal is 0.7559 tc/tec. The CE coefficients of gasoline 
and kerosene are 0.5538 tc/tec and 0.5714 tc/tec, respec-
tively. 0.5538 tc/tec and 0.5714 tc/tec. In addition, through 
the statistics of major energy consumption by industrial 
enterprises above the scale of the Shenyang Statistical 
Yearbook, it is found that there are differences in the cor-
responding consumption of energy contained in Table 2 
with the change of the year. Among them, the consump-
tion of raw coal is the highest each year. With the increase 
of the year, the consumption of raw coal presents increas-
ing and then decreasing, and the consumption gradually 
decreases from 2020 to 2022.

Analysis of LUCE Timing and Influencing 
Factors Based on Improved LMDI Modeling

After completing the LUCE accounting work, the time-
series characterization was carried out. Based on Table 1, 

the total CE of different land types with different durations 
is calculated. On this basis, the total CE profile of con-
struction land in different years is calculated according to 
equation (1). Through equation (3), the net land-averaged 
CE intensity GCi is obtained.

 *=i iGC CE T  (3)

In equation (3), the net CE is set and expressed as 
C, and the total land area of Shenyang City is expressed 
and expressed as T*. Among them, the unit of GCi is t/hm2. 
To calculate the per capita CE intensity, the relevant for-
mula is shown in equation (4).

 =i i iPPC CE P  (4)

In equation (4), the net CE per capita is set to be PPCi , 
and its unit is t/person, and the total population of Shenyang 
City in the year of i is expressed as Pi. The CE intensity 
ground on GDP is calculated: CE intensity = net CE (t)/
GDP (million yuan). In different land types, their CE time 
series characteristics were analyzed. After completing 
the LUCE time series analysis, its influencing factors are 
studied. The Kaya equation was chosen due to the fact that 
it studies the relationship between multiple factors, such 
as carbon dioxide from human activities and population, 
while the thesis studies the impact relationship between CE 
and land change. In order to be more relevant, the study 
improves the Kaya equation so as to obtain the relevant 
mathematical expression as shown in equation (5).

 δ= × × × ×∑ i iCE h l PG ps  (5)

In equation (5), hi represents the meaning of CE in-
tensity per unit of land, set the land use structure as li, 
expresses the land use intensity per unit of GDP as δ, 
and set the GDP per capita as PG. The population size 
is set to ps. Quantitatively calculate the influence degree 
of influencing factors through the LMDI model. Among 
them, the model can be processed by additive decompo-
sition or multiplicative division. Setting CE0 expresses 
the meaning of total CE in the base period and t indicates 
the period of t, and setting the change of total CE, set it 
to ΔCE. The resulting mathematical expression of ΔCE 
is shown in equation (6).

 δ∆ = ∆ + ∆ + ∆ + ∆ + ∆
i ih l PG psCE CE CE CE CE CE  (6)

In equation (6), ΔCEhi means the amount of CE change 
influenced by hi, and the amount of CE change affected by δ 
is set to ΔCEli. For PG, set the amount of CE change under 
the ΔCEPG; ΔCEps means the amount of CE change under 
the influence of ps, and set the amount of CE change under 
the influence of li, set it as ΔCEli. In practice, the LMDI 
model cannot decompose the data when there are 0 or 
negative values. In order to compensate for this shortcom-
ing, the study chose the limit method to replace the 0 with 
other data. With this replacement, the situation of data with 
a 0 value can be solved, and it will not affect the results. 

Table 2. The conversion coefficient of energy to standard coal.

Energy type Standard coal conversion  
coefficient

Raw coal 0.7143 tce/t

Coke 0.9814 tce/t

Natural gas 1.3300 tce/10 m43

Crude oil 1.4286 tce/t

Gasoline 1.7414 tce/t

Kerosene 1.4714 tce/t

Diesel oil 1.4571 tce/t

Fuel oil 1.4286 tce/t

Liquefied petroleum gas 1.7143 tce/t

Table 3. The calorific value and other factors of different energy 
sources.

Energy type CE coefficient situation (tc/tec)

Raw coal 0.7559

Coke 0.8550

Natural gas 0.4483

Crude oil 0.5857

Gasoline 0.5538

Kerosene 0.5714

Diesel oil 0.5921

Fuel oil 0.6185

Liquefied petroleum gas 0.5042
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In the context of the actual situation, the case of negative 
value treatment can be disregarded because negative value 
does not occur. In this regard, the relevant calculations 
are performed through the multiplicative decomposition 
form. The calculation formula for ΔCEhi in the additive 
decomposition mode is shown in equation (8).
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According to equation (7), the formulas for variables 
such as ΔCEPG, ΔCEps can be obtained. T represents a spe-
cific time period. According to these formulas, relevant 
calculations are carried out, so that the relevant contribu-
tions of factors such as hi and δ can be obtained. Accord-
ing to the value of the contribution, analyze the influence 
of the factors on CE.

Results of the Analysis of Factors Affecting 
Urban LUCE Ground on the Improved LMDI

The study analyzes the time-series characteristics 
of LUCE in Shenyang City according to the accounting 
method of LUCE and understands its CE and other re-
lated situations of various land use types. Then it analyzes 
the situation of LUCE influencing factors in Shenyang city.

Results of Timing Characterization of Urban LUCEs

Carry out the selection of economic data for Shenyang 
City from 2015 to 2022, as described above. Calculate 
the total CE of different land types in different years ac-
cording to equation (1) and the data in Table 1. On this 
basis, the total CE of construction land in different years 
is calculated according to equation (2), so that the relevant 
CE data can be displayed in Table 4.

In Table 4, the positive value demonstrates CE, 
and the negative is carbon absorption; they have distinc-
tions in the annual CE corresponding to various land uses, 
in which the CE of construction land and cropland is posi-
tive, i.e., they are carbon sources, and the CE of other 
land uses is negative. In 2015, the CE of construction 
land was 2705.41*104 t, which is obviously more than 
the CE of arable land, while the CE of arable land was 
15.29*104 t. At this time, the CE of forest land inhibition 
is 31.49*104 t. In 2022, the net CE will be 2614.77*104 t. 
It can be seen that the CE outperforms carbon absorption 
from Table 4, and the total CE is calculated to be the total 
carbon absorption, after which the CE is calculated to be 
the total carbon absorption, and the total CE is calculated 
to be the total carbon absorption. Calculating the total CE 
is 76 times the total carbon absorption. Analyzing the trend 
in land-mean CE in the city and in different land uses is 
shown in Fig. 1.

In Fig. 1(a), under different years, Shenyang city’s land 
average net CE intensity and construction land average net 
CE intensity are different; in general, these two average 
net CE changes are consistent. In 2015, the land-aver-
aged net CE intensity of Shenyang city was 20.73 t/hm2, 
which was 0.16 t/hm2 lower than the construction land, 
and the latter was 20.89 t/hm2; the land-averaged CE in-
tensity in 2019 was larger, and the land-averaged net CE 
intensity of the construction land was 24.62 t/hm2. In Fig. 
1(b), the folds where the five types of land, such as grass-
lands, are located do not have much fluctuation, and among 
them, the land-averaged CE intensity of cropland is larger. 
In 2022, the land-averaged CE intensity of arable land will 
be 0.76, while the land-averaged CE intensity of garden 
land will be -0.029. Analyzing the changes in per capita 
CE of the city and different land uses is shown in Fig. 2.

In Fig. 2(a), overall, the per capita CE intensity of Shen-
yang city is slightly smaller than the per capita net CE 
intensity of construction land. In Shenyang city, the total per 
capita CE showed an increasing trend from 2016 to 2019, 

Table 4. Related CE data.

Type 2015 2016 2017 2018 2019 2020 2021 2022

Cultivated land (104t) 15.29 18.62 18.61 18.60 19.40 18.60 19.31 19.30

Garden -1.11 -0.87 -0.87 -0.87 -0.98 -0.87 -0.99 -0.99

Forest land (104t) -31.49 -31.03 -31.03 -31.02 -33.24 -31.02 -33.20 -33.10

Grassland (104t) -2.94 -2.94 -2.94 -2.94 -4.11 -2.94 -4.03 -4.03

Waters -0.49 -0.49 -0.49 -0.49 -2.45 -2.45 -2.49 -2.49

Use of land in construc-
tion (104t) 2705.41 2639.41 3080.950 3128.52 3187.18 2724.10 2696.81 2636.07

Total absorption (104t) -36.03 -35.34 -35.33 -35.32 -40.79 -37.28 -40.71 -40.60

Total carbon emissions 
(104t) 2720.70 2658.03 3099.56 3147.12 3206.58 2742.70 2716.12 2655.37

Net carbon emissions 
(104t) 2684.67 2622.70 3064.23 3111.80 3165.79 2705.41 2675.42 2614.77
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and the per capita CE from construction land also continued 
to rise during the same period. After 2019, this trend began 
to reverse and overall displayed a decreasing trend, which 
was consistent with the overall net CE change trend during 
the study period. Among them, in 2017, the per capita CE 
intensity of Shenyang city was 4.16 t/person, which was 
0.02 t/person less than that of the construction land, which 
was 4.18 t/person; in 2019, the per capita net CE intensity 
of the construction land was 4.22 t/person, while the per 
capita CE intensity of Shenyang city was 4.19 t/person. 
In Fig. 2(b), different land use types correspond to differ-
ent per capita CE intensities. For the same land use type, 
the difference in per capita CE intensity in different years is 
small. In 2016, the per capita CE intensity of cropland was 
0.0254 t/person, while the per capita CE intensity of garden 
land was -0.0012 t/person. In 2018, the per capita CE inten-
sity of forest land was -0.0416 t/person, while the per capita 
CE intensity of forest land was -0.0440 t/person in 2019, 
with a smaller difference between the two. In 2020, the per 

capita CE intensity of cropland will be 0.0244 t/person, 
which is smaller than that of 2019, which has a per capita 
CE intensity of 0.0257 t/person. The changes in CE inten-
sity from analyzing cities as well as various land uses are 
displayed in Fig. 3.

In Fig. 3(a), the CE intensity of urban and construction 
land had the same trend of change, with an overall trend 
of increasing and then decreasing. In 2015, the per capita 
CE intensity of Shenyang city was 3.69 t/million yuan, 
which was smaller than that of construction land, which had 
a per capita CE intensity of 3.72 t/million yuan. Compared 
with 2018, the per capita CE intensity of Shenyang city was 
greater in 2017, and it was 5.52t/yuan, while the per capita 
CE intensity of construction land in 2017 was 5.55t/yuan. 
In Fig. 3(b), the CE intensity of cultivated land in Shenyang 
City shows a decreasing trend year by year between 2016 
and 2022. Among them, in 2019, the CE intensity of ar-
able land was 0.030 t/million yuan, while the CE intensity 
of grassland was -0.006 t/million yuan.

Fig. 1. Changes in average CE per city and different land uses.

Fig. 2. Changes in per capita CE in cities and different land uses.
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Results of the Analysis of LUCE Influencing Factors

Ground on Table 4, through the additive decomposition 
mode, the analysis is carried out, and the results of the de-
composition of urban net CE factors under the additive 
decomposition mode are obtained in Table 5.

In Table 5, the contribution of factors to net CE is dif-
ferent under different time periods; different factors have 
various effects on net CE. In 2015–2016, the contribu-
tion value of GDP per capita was 23.46*104 t, which is 
11.94*104 t larger than that in 2021–2022, and the contribu-
tion value of the latter was 11.52*104 t. The contribution 
value for 2016–2017 is larger, which is 274.32*104 t. In 
2019–2020, the contribution of the CE intensity per unit 
of land is -443.49*104 t. According to the contribution 
of land use structure, it has a significant inhibiting effect on 
net CE. The contribution value of various factors to the CE 
of Shenyang city is analyzed in Fig. 4.

In Fig. 4, there are differences in the corresponding con-
tribution values depending on the factors. In the negative 
inhibition component, the total contribution value of CE 
intensity per unit of land is -769.64*104 t. While GDP per 
capita and population size will have an active contribution 

to CE, the total contribution value of these two factors is 
477.57*104 t and 274.33*104 t. Analyzing the influence 
of factors such as land-use structure on CE is shown in Fig. 5.

In Fig. 5(a), there are positive and negative values 
of the contribution of CE intensity per unit of land under 
different times, and in 2020–2021, the contribution of CE 
intensity per unit of land is positive. In 2020–2021, the con-
tribution value is 5.23*104 t. In 2016–2017, the contribution 
was -81.13*104 t, and its inhibition of CE was smaller than 
that in 2018–2019. In 2016–2017, the intensity of CE per 
unit of land has the largest inhibitory effect on CE, and its 
corresponding contribution value was -443.49*104 t. In Fig. 
5(b), the contribution value of the land use structure is less 
than 0 at different times, which means that this factor has 
an inhibitory effect on CE. Among them, in 2018–2019, 
the contribution of land use structure was 47.26*104 t. 
In Fig. 5(c), the contribution value of land use intensity 
per unit of GDP under different time periods has posi-
tive and negative values, which means that this factor has 
a suppressing as well as a promoting effect on CE. In this 
case, the total contribution of this factor is 537.04*104 t. 
Analyzing the changes in the impact of GDP per capita 
and population size on CE, respectively, is shown in Fig. 6.

Fig. 3. Changes in CE intensity of cities and different land uses.

Table 5. Decomposition results under additive decomposition mode.

Time period ΔCEhi (104t) ΔCEPG (104t) ΔCEps (104t) ΔCEli (104t) ΔCEδ (104t) ΔCE (104t)

2015–2016 -52.06 31.78 16.25 -81.27 23.46 -62.67 

2016–2017 -81.13 242.54 63.26 -57.46 274.32 441.53 

2017–2018 -34.61 34.12 21.87 -41.37 67.55 47.56 

2018–2019 -92.13 22.26 53.49 -47.26 122.76 59.12 

2019–2020 -443.49 67.23 91.48 -231.16 54.18 -461.76 

2020–2021 5.23 32.49 11.49 -59.52 -16.75 -27.06 

2021–2022 -71.45 47.15 16.49 -64.46 11.52 -60.75 
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Fig. 5. Changes in the impact of different factors on CE.

Fig. 4. The contribution value of different factors to the total CE of Yuanjiang City.
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In Fig. 6 (a), the contribution values of per capita GDP 
in different time periods are all greater than 0. Among them, 
the total contribution value of per capita GDP from 2016 
to 2017 was as high as 274.33 * 104 t, which is a relatively 
large contribution value. The contribution value of the re-
maining time periods is relatively low, fluctuating around 
50 * 274.33 * 104 t. The reason is that during this year, 
national policies focused more on economic development 
and ignored the negative impact of carbon emissions on 
the environment. Subsequently, the country has introduced 
corresponding policies to balance economic growth and en-
vironmental protection, and carbon emissions have been 
controlled to a certain extent. In Fig. 6 (b), the contribution 
of population size is greater than 0. The impact of popula-
tion size on CE is a promotion. Among them, from 2016 to 
2017, the contribution of population size was 63.26 * 104 
t. In 2019–2020, the contribution value of population size 
was as high as 90.35 * 104 t. This indicates that popula-
tion growth will promote an increase in carbon emissions. 
The reason is that population growth has brought about 
an increase in demand for energy, transportation, and pro-
duction, which in turn has led to an increase in carbon 
emissions.

Conclusion
Facing the problem of analyzing the influencing factors 

of LUCE in Shenyang city, the study adopts the LUCE ac-
counting method and combines it with the improved LMDI 
model to carry out a detailed time-series analysis of the CE 
of various land use types in the city. The results show that 
in the time-series characterization of urban LUCE, CE oc-
cupies a much higher proportion than carbon absorption, 
and the total CE is calculated to be 76 times the total carbon 
absorption. Overall, the per capita CE intensity of Shenyang 
city is slightly smaller than the per capita net CE intensity 
of construction land. Among them, in 2017, the per capita 
CE intensity of Shenyang city was 4.16 t/person, which 
was 0.02 t/person less than that of construction land, which 
was 4.18 t/person. In the negative effect of LUCE, the con-
tribution of unit land CE intensity accounts for a large 
proportion, and its total contribution value is -769.64*104 t. 
It is followed by the land use structure, and the absolute 
value of its total contribution value is smaller than that 
of unit land CE intensity. This shows that the research 
method is effective. The study has some shortcomings. 
Given the limitations of research capacity and the chal-
lenges of data acquisition, the study failed to integrate 

Fig. 6. The impact of two factors on CE changes.
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energy consumption as an assessment factor directly into 
the analytical framework. In the future, the incorporation 
of energy use and land-related factors into the assessment 
system will provide a more comprehensive perspective to 
explore in depth the drivers of GHG emissions from land 
use in Shenyang.
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