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Abstract 

Accurate prediction of PM2.5 concentration is crucial for public health and environmental protection. 
This paper develops a novel forecasting model that combines optimized signal decomposition with 
multi-objective feature selection techniques and error correction to enhance the accuracy of PM2.5 
concentration predictions. Initially, the RIME algorithm is employed to precisely set the parameters 
of Variational Mode Decomposition (VMD), which decomposes the raw PM2.5 data into high, medium, 
and low-frequency components based on sample entropy values. Subsequently, a multi-objective feature 
selection approach is utilized to identify key feature subsets that significantly influence each frequency 
domain component. Finally, an optimized Informer model is deployed for comprehensive forecasting, 
complemented by an error correction mechanism to obtain the final PM2.5 concentration predictions. 
Experimental results indicate that the optimized decomposition effectively extracts key information 
from the data, reducing prediction complexity. The multi-objective feature selection approach 
provides superior identification of feature subsets compared to traditional single-objective methods.  
The enhanced Informer model, coupled with error correction, significantly improves the model’s 
accuracy and robustness.

Keywords: PM2.5 forecasting, VMD, multi-objective feature selection, RIME algorithm, informer, error 
correction
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Introduction

As industrialization accelerates, human society’s 
demand for energy continues to rise. However, 
this increase in energy demand is accompanied by 
worsening air pollution issues, particularly the rising 
concentration of PM2.5 (fine particulate matter), posing 
a significant threat to public health. Due to its small 
particle size, PM2.5 can penetrate deep into the lungs 
and even enter the bloodstream, closely associated 
with various respiratory and cardiovascular diseases 
[1]. Consequently, monitoring and predicting PM2.5 
concentrations has become a critical task in urban 
environmental management. Accurate prediction of 
PM2.5 concentrations can greatly assist in environmental 
quality assessment, the establishment and improvement 
of public health warning systems, and the formulation of 
strategies for air pollution control [2, 3].

Recent studies have highlighted the significant 
constraints imposed by climate change and smog 
pollution on high-quality economic development in 
China. The urgency of addressing these environmental 
challenges is underscored by the adverse effects on 
public health and economic stability, particularly in 
urban areas where PM2.5 levels are critically high. 
According to recent findings, low-carbon city pilot 
(LCCP) policies have shown potential for synergistically 
governing carbon and smog emissions, thus aiding 
cities in achieving dual environmental and economic 
benefits [4]. These policies have been instrumental in 
reducing energy consumption intensities and optimizing 
industrial structures, which are crucial steps toward 
sustainable urban development. 

Furthermore, the development of public 
transportation systems has been identified as a crucial 
strategy for improving urban air quality. The “Transit 
Metropolis” construction demonstration project,  
a significant initiative in China, has been effective in 
reducing private car ownership and upgrading industrial 
structures, thereby contributing positively to air quality 
[5]. This policy’s success provides a compelling context 
for our model’s application. The significance of this 
research is further magnified by the pressing need to 
implement effective air quality management practices 
in light of the ongoing challenges posed by rapid 
urbanization and industrialization in major Chinese 
cities. By providing a robust tool for predicting PM2.5 
concentrations, this paper assists policymakers and 
urban planners in crafting strategies that align with 
sustainability goals.

Current research indicates that PM2.5 concentration 
prediction techniques primarily fall into two categories: 
models based on physical laws and data-driven intelligent 
algorithms. Physical models often require researchers to 
have an extensive background in atmospheric science, 
understanding the chemical and physical evolution 
processes and the trans-regional migration of the 
atmosphere [6]. These models use meteorological data 
and environmental information to make predictions 

through complex numerical calculations. Although 
suitable for long-term forecasting, these models involve 
cumbersome computational processes and require high-
quality data [7]. In contrast, data-driven intelligent 
algorithms, by mining statistical information and 
features from historical data, can establish a mapping 
relationship between historical data and forecasting 
targets. These methods can effectively predict PM2.5 
concentrations even with incomplete historical data and 
are more cost-effective. Traditional statistical methods 
like Markov chains [8] and Autoregressive Integrated 
Moving Average (ARIMA) models [9], as well as 
machine learning approaches such as Support Vector 
Machines [10], have been widely adopted in the field of 
PM2.5 prediction.

The Transformer, known for its capability to learn 
complex patterns and features from time series and 
its ability to capture long-distance dependencies, 
has been applied in time series forecasting [11]. The 
Informer model introduces the ProbSparse self-
attention mechanism, which reduces computational 
complexity by calculating attention only for a subset 
of key elements. Autoregressive sparsification further 
reduces the attention scores that need to be calculated, 
focusing only on those most likely to be important. 
This reduces the computational burden and improves 
the model’s efficiency and performance in handling 
long sequences. The Informer model optimizes the 
encoding of time features, ensuring the model better 
understands and utilizes temporal information, which 
is particularly important for time series forecasting. 
This encoding approach helps the model capture 
seasonal and trend dynamics in the time series [12]. 
With increasing demands for prediction accuracy, more 
research is exploring hybrid forecasting models to 
more accurately capture the temporal characteristics of 
PM2.5 concentration variations and enhance prediction 
accuracy.

In the data preprocessing stage, to mitigate the 
effects of the nonlinearity, volatility, and instability of 
PM2.5 concentration data on the forecasting models, 
researchers often employ decomposition algorithms. 
These algorithms can break down complex raw data 
into several more stable subsequences, thereby reducing 
the non-stationary characteristics of the data. Widely 
used decomposition algorithms include Empirical Mode 
Decomposition (EMD), Empirical Wavelet Transform 
(EWT), and Variational Mode Decomposition (VMD). 
For instance, some studies have used EMD to split PM2.5 
data into multiple intrinsic mode components and residue 
components, which are then sequentially fed into a GRU 
neural network for training [13]. The Empirical Wavelet 
Transform (EWT) algorithm can adaptively partition 
the Fourier spectrum and select appropriate wavelet 
filter banks. Research has been conducted using EWT 
to obtain several PM2.5 time series components and then 
construct predictors based on the Echo State Network 
(ESN) for each decomposed sublayer within each cluster 
group to perform multi-step forecasting calculations 
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and form the final predictions [14]. Although EMD and 
EWT have demonstrated certain effects in enhancing 
prediction accuracy, they also have issues with endpoint 
effects and mode mixing. To overcome these issues, 
some studies have used VMD for data decomposition, 
inputting each decomposed subsequence (including the 
residual sequence) into a GRU, and then calculating 
the prediction loss of the subsequences [15], achieving 
relatively good results. However, the selection of VMD 
parameters remains a challenge. In other forecasting 
fields, some studies have adjusted VMD parameters 
through optimization algorithms and combined them 
with Convolutional Neural Networks and Bidirectional 
Long Short-Term Memory networks (CNN-BILSTM) 
to predict decomposed components, proving the 
effectiveness of this method in parameter selection [16].

In the feature selection stage of PM2.5 concentration 
forecasting, selecting highly correlated and significant 
features is crucial for enhancing the model’s prediction 
speed and accuracy. There are numerous methods for 
feature selection, including Mutual Information (MI) 
and Random Forest (RF) [13], which have proven 
effective in identifying features strongly correlated with 
PM2.5 concentrations. For example, some studies have 
used a method combining Variance Inflation Factor 
and Mutual Information (VIF-MI) to select features, 
demonstrating that this method can effectively reduce 
model complexity and enhance prediction efficiency 
[17]. While feature selection can improve prediction 
accuracy [18], although single-objective feature 
selection methods are effective in reducing redundancy 
and error, they often overlook the interrelationships 
among multiple objectives, which may not achieve the 
optimal overall effect. To this end, in the field of wind 
speed forecasting, some research has proposed a method 
based on K-means clustering and the non-dominated 
sorting differential evolution algorithm (FWNSDEC),  
a multi-objective feature selection method that integrates 
the advantages of different algorithms and shows better 
prediction performance than single feature selection 
methods [19].

After a systematic review of the literature, several 
research gaps seem to await further supplementation 
and exploration. Firstly, while previous studies have 
successfully applied various decomposition techniques 
to predict PM2.5 concentrations, common algorithms like 
EMD and EWT still have issues with endpoint effects 
and mode mixing, and parameter selection for various 
decomposition algorithms remains a challenge; single-
objective feature selection has been applied in the field 
of PM22.5 concentration prediction, but integrating the 
interrelationships among multiple objectives to further 
reduce redundancy and error could potentially yield 
better prediction results; moreover, the error series 
generated in predictions also contains some potential 
features, and in some prediction fields, error correction 
has been proven to improve prediction accuracy to 
some extent [20, 21], but existing PM2.5 concentration 
predictions have paid little attention to post-model 

processing, especially error correction model with 
decomposition (ECD). Based on the above analysis, this 
paper proposes an integrated forecasting framework. 
The first step of the framework uses the RIME 
algorithm to select parameters for Variational Mode 
Decomposition (VMD) to stabilize the fluctuations in 
PM2.5 data. Then, by integrating similar components 
using sample entropy, high, medium, and low-frequency 
data components are formed. Next, an optimized multi-
objective feature selection algorithm (MOFS) is used, 
combining the functions of filters and wrappers, to 
precisely select the best input feature set. Finally, an 
optimized Informer model is used to predict different 
frequency data components and error correction 
is combined to obtain the final prediction results.  
The specific research contributions include:

1) In the data preprocessing stage, the RIME 
algorithm is innovatively used to select the parameters 
for Variational Mode Decomposition (VMD), enhancing 
the effectiveness of VMD decomposition and reducing 
the volatility of the raw data. This is crucial as the RIME 
algorithm simulates the movement and interaction 
of frostbite particles, exhibiting high exploratory 
capabilities, especially important when dealing with 
long-duration data containing complex patterns and 
trends, such as PM2.5 concentrations. The forward 
greedy selection mechanism ensures that the algorithm 
always chooses solutions with higher fitness during 
updates, which helps continuously optimize the quality 
of results in long-term series analysis. Additionally, 
this selection mechanism aids in rapid convergence, 
particularly when dealing with large datasets, effectively 
reducing computational time and resource consumption. 
Unlike traditional methods that often struggle with 
parameter selection [13, 16], the RIME-enhanced VMD 
stabilizes data fluctuations and reduces mode mixing 
issues inherent in techniques like EMD and EWT. 
This approach has not been observed in previous PM2.5 
concentration forecasting literature.

2) For the first time, Multi-Objective Feature 
Selection (MOFS) is introduced into the field of PM2.5 
concentration prediction. MOFS optimizes the objective 
functions of both the designed filter and wrapper, thus 
integrating the advantages of these two different feature 
selection criteria. The Minimum Redundancy Maximum 
Relevance (mRMR) and Time Series Cross-Validation 
(TSCV) are used as the filter and wrapper objective 
functions, respectively. This approach selects the best 
feature inputs from multiple meteorological factors 
and historical data, enhancing the model’s prediction 
speed and accuracy. By employing MOFS, our model 
effectively addresses the limitations seen in traditional 
methods like Mutual Information and Random Forest, 
which do not consider the multivariate interrelationships 
crucial for understanding complex environmental data 
[13, 18].

3) Innovatively, an optimized Informer model 
is introduced into the field of PM2.5 concentration 
prediction. This paper compares it with common 
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models such as LSTM, CNN, and Bi-LSTM. Studies 
[22, 23] have utilized LSTM and CNN for short-term 
PM2.5 forecasting, demonstrating their effectiveness in 
capturing linear relationships but often struggling with 
complex nonlinear patterns and long-term dependencies 
that are critical in environmental datasets. Similarly, 
Bi-LSTM models have improved upon LSTM by 
processing data in both forward and backward states but 
still face limitations in handling very long sequences 
and high computational loads. The ProbSparse self-
attention mechanism and time feature encoding of the 
Informer model ensure that the model can understand 
and utilize time information effectively while reducing 
computational complexity, helping to capture the 
dynamic changes in the PM2.5 concentration time 
series. Experimental results show that the model used 
in this study achieved the best results across all three 
evaluation metrics. 

4) Error correction techniques are seldom applied in 
the field of PM2.5 concentration prediction, particularly 
the error correction model with decomposition (ECD), 
which is introduced into the hybrid model proposed in 
this paper to further enhance prediction accuracy. 

5) Aligning with global and national initiatives 
to combat air pollution, our model’s capabilities 
support the objectives of policies like China’s “Transit 
Metropolis” policy and LCCP, which aim to achieve 
dual environmental and economic benefits [4, 5]. Our 
research not only provides technological insights but 
also offers practical tools for policymakers to assess and 
refine strategies aimed at reducing PM2.5 levels and their 
associated health risks. The hybrid model proposed in 
this paper considers potential issues to various stages of 
prediction, combining the advantages of each module to 
accurately predict PM2.5 concentrations. This enriches 
the technological tools in the field, providing valuable 
quantitative references for environmental quality 
assessment, the establishment and improvement of 
public health warning systems, and the formulation of 
strategies for air pollution control.

Materials and Methods

Rime Optimization Algorithm

The Rime Optimization Algorithm was proposed by 
Hang Su in February 2023. It is inspired by the growth 
mechanism of rime frost. The algorithm simulates  
the movement of soft rime frost particles and introduces 
a frost impulse search strategy for algorithmic search. 
The components of the algorithm are as follows:

1) Initialization of rime frost cluster. Where i 
represents the index of a RIME agent and j the sequence 
number of rime frost particles, R denotes the population, 
and F(Si) is used to represent the growth state of 
each individual, i.e., the fitness value of an agent in 
metaheuristic algorithms.
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2) Soft rime frost search strategy. Reflecting the five 
movement characteristics of rime frost particles, this 
simplifies the simulation of each rime frost particle’s 
condensation process and calculates the position of the 
rime frost particles as shown in Equation (3).

 

, 1

2

cos
( ( ) ),

new
ij best j

ij ij ij

R R r
h Ub Lb Lb r E

θ β= + ⋅ ⋅
⋅ ⋅ − + <

  (3)

Where Rij
new is the new position of the updated 

particle. Rbest,j is the particle of the best rime frost agent 
R within the rime frost population j. The parameter r is 
a random number within the range (1, 1) and r1 controls 
the direction of particle movement. cosθ changes with 
the iteration number as shown in Equation (4). β is the 
environmental factor, which follows the iteration number 
to simulate the impact of the external environment and 
ensures the convergence of the algorithm as shown in 
Equation (5). h is the adhesion factor, a random number 
within the range (0, 1), controlling the distance between 
the centers of two rime frost particles. Ubij and Lbij 
define the upper and lower limits of the escape space, 
restricting the particle’s effective movement area. E is 
the adhesion coefficient, influencing the probability of 
agent cohesion and increasing with the iteration number, 
as shown in Equation (6).

 10
t
T

θ π= ⋅
⋅   (4)

Where t,T represent the current iteration number and 
the maximum iteration number, respectively.

 
1 [ ] /w t w

T
β ⋅
= −

 (5)

Where the default value of w is 5, it is used to control 
the number of segments of β.

 ( / )E t T=  (6)



A Novel Hybrid Forecasting Model for PM2.5... 5

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

redundancy, improving machine learning efficiency 
without sacrificing a significant amount of accuracy. 
In mRMR, mutual information coefficients are used to 
calculate the relationship between variables. The specific 
calculation method is shown in Equation (8), where p(x)  
and p(y) represent the marginal probability density of 
variables x and y, respectively; p(x, y) represents the 
joint probability density of x and y; and I(x, y) represents 
the mutual information coefficient value between x and 
y, with higher values indicating stronger relevance.

 

( , )( , ) ( , ) log
( ) ( )
p x yI x y p x y dxdy

p x p y
 

=  
 ∬   (8)

Therefore, for a given feature set S, the redundancy 
and relevance within the set can be measured by 
Equations (9) and (10), respectively.
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i j
x x S

R S I x x
S ∈

= ∑
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| | i

i
x S

D S I x y
S ∈

= ∑
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Based on the mRMR criterion, the filter objective 
function can be constructed to obtain both minimal 
redundancy and maximal relevance, as computed by 
Equation (11).

 1( ) ( ) ( )f S R S D S= −  (11)

Wrapper objective function: Mean Squared Error 
(MSE) is commonly used to measure the magnitude of 
error between predicted and actual values. To achieve  
a more scientifically valid error metric, MSE is 
combined with time series cross-validation techniques 
to derive the wrapper objective function, as shown in 
Equation (12). In the equation, n represents the number 
of samples in each subset, and v represents the number 
of validation sets. yi,t and ŷi,t (S) respectively represents 
the actual value and the predicted value with the given 
feature set S for the ith sample in the subset. The paper 
sets the number of cross-validations to 10. As Kernel 
Extreme Learning Machine (KELM) is efficient and 
provides good fitting results, it is used as the predictor 
for the wrapper.
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Thus, the combined filter-wrapper objective function 
can be formulated as shown in Equation (13):
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3) Hard-rime puncture mechanism. Inspired by the 
piercing phenomenon, a hard-rime puncture mechanism 
is proposed to update the algorithm among agents, 
enabling the exchange of algorithmic particles to 
enhance the convergence of the algorithm and the ability 
to escape local optima. The particle interchange formula 
is shown in Equation (7).

 ( ), 3,new normr
ij best j iR R r F S= <

  (7)

Where Fnormr(Si) denotes the normalized value of the 
current agent’s fitness.

4) Positive Greedy Selection Mechanism. The idea is 
to compare the fitness value of an agent after the update 
with the value before the update. If the updated fitness is 
superior, a replacement occurs, and the solutions of both 
agents are swapped.

Variational Mode Decomposition (VMD)

Variational Mode Decomposition (VMD) 
decomposes a complex signal into a predetermined 
number of band-limited Intrinsic Mode Functions (IMFs) 
through a variational approach. The core advantage of 
VMD is its ability to adaptively determine the central 
frequency and bandwidth of each component, effectively 
isolating different frequency components of the signal.

In practical applications, the performance of VMD 
depends on the appropriate selection of the modal 
number K and penalty factor α. Suitable K and α can 
decompose the signal more effectively and enhance the 
forecasting performance. To effectively select these two 
parameters, this paper utilizes RIME with the objective 
of minimizing the sample entropy value for optimization.

Sample Entropy

Sample Entropy (SampEn) is a tool used to measure 
the complexity of a time series, quantifying the rate of 
new information production within the series. Compared 
to other measures of complexity, Sample Entropy has the 
advantages of being computationally straightforward, 
independent of data length, and insensitive to noise. Its 
primary purpose is to determine the frequency of similar 
patterns within a time series. A lower Sample Entropy 
indicates a higher frequency of repeating patterns 
and, consequently, a lower complexity. Conversely, 
a higher Sample Entropy suggests that the time series 
is more complex and unpredictable. In this paper, 
Sample Entropy is used to measure the complexity of 
the components, and on this basis, components of high, 
medium, and low frequencies are constructed.

Multi-Objective Feature Selection (MOFS)

Filter objective function: mRMR (minimum 
Redundancy Maximum Relevance) obtains an 
optimal feature set by considering both relevance and 
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Informer

Informer, introduced by Zhou et al. (2021), represents 
a significant advancement in the field of time-series 
forecasting, particularly for long sequences. Building 
on the well-established Transformer architecture, the 
Informer introduces several key innovations that address 
the limitations of its predecessor, especially in handling 
sequences that are orders of magnitude longer than those 
typically processed by standard Transformers.

Enhanced Attention Mechanism

One of the most critical challenges addressed by 
the Informer is the inefficiency of the Transformer’s 
self-attention mechanism when dealing with long 
sequences. The standard self-attention has a quadratic 
computational complexity with respect to the sequence 
length, which makes it impractical for long sequence 
forecasting due to excessive memory and computational 
resource requirements.

ProbSparse Self-Attention Mechanism

The Informer mitigates this issue through its 
ProbSparse self-attention mechanism, which strategically 
reduces the number of attention calculations required. 
This is achieved by identifying and attending only to a 
sparse subset of the most informative key-query pairs, 
rather than exhaustively computing attention weights 
across all pairs.

Complexity Reduction

 

( , , ) max
T

k

QKAttention Q K V Soft V
d

 
=   

   (14)

Here, in Equation (14), Q is a matrix of queries, K is 
a matrix of keys, V is a matrix of values, and dk is the 
scaling factor determined by the dimensionality of the 
keys. The Informer’s attention mechanism significantly 
reduces computational complexity by sparsifying the 
matrix Q.

In the conventional Transformer, the computation 
of QKT has a complexity of O(n2), where n is the 
sequence length. The Informer, by contrast, reduces 
this to O(nlogn), thereby enabling the processing of 
significantly longer sequences.

Sparsity Measure

The significance of queries is ascertained using a 
sparsity measure, which is essential for the ProbSparse 
technique:

 1 1

1( | ) ln
i iK K

q k TL L
i jd

i
l lK

q k
M q K e

L d= =

= −∑ ∑
 (15)

Where qi is a specific query and LK is the length of 
the key sequence.

Self-Attention Distilling Encoder

Traditional Transformer encoders are limited by the 
memory constraints imposed by long input sequences. 
The Informer’s encoder circumvents this limitation 
through a process called Self-Attention Distilling.

Distillation Mechanism

( )( )( )1 1 [ ]t t
j j ABX MaxPool ELU Conv D X+ =

 (16)

[Xj
t]AB is the attention block. By applying a 

convolutional layer followed by a downsampling 
operation, the Informer encoder is able to reduce 
the temporal dimension of the data while preserving 
essential information, thus facilitating the processing 
of long sequences without a proportional increase in 
memory usage.

Generative Decoding for Forecasting

The Informer’s decoder extends the Transformer’s 
capabilities by incorporating a Generative Inference 
approach designed to efficiently generate predictions for 
long sequences.

Generative Inference Process

 
( ) model

de token

( )
0, token yL L dt

t tX Concat X X + ×= ∈R
 (17)

where Xtde feed de represents the input of the decoder, 
Xttoken token is the beginning token of the sequence, and 
X0

t is the placeholder of the target sequence. This process 
allows the Informer to generate forecasts without the 
need to recompute attention weights for the entire 
sequence, thereby avoiding the performance bottleneck 
encountered by standard Transformer decoders during 
long sequence generation.

Proposed Model

The hybrid model proposed in this paper consists 
of four modules: optimized decomposition, feature 
selection, deep learning prediction, and error correction. 
Fig. 1 illustrates the flowchart of this hybrid model.

Step 1: Optimized Decomposition. 
The raw PM2.5 data sequence is decomposed using 

Variational Mode Decomposition (VMD) optimized 
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by the RIME algorithm. This step extracts useful 
information by calculating Sample Entropy (SE) for 
each component derived from the decomposition. Based 
on these calculations, the main frequency components – 
high, medium, and low – are reconstructed to capture the 
different dynamic characteristics of PM2.5 concentration 
changes.

Step 2: Multi-objective Feature Selection. 
This step involves using a multi-objective feature 

selection strategy to filter meteorological elements and 
endogenous variables from the decomposed frequency 
components. This process aims to select the most 
influential feature subsets from complex data, creating 
an optimal feature combination for each frequency 
component. This approach simplifies the data for the 
prediction model, reduces the computational burden, 
and enhances prediction accuracy.

Step 3: Deep Learning Prediction. 
The Informer model’s hyperparameters are 

optimized using the RIME algorithm. Predictions are 
then made for all sub-sequences, and the results from 
each component are linearly combined to produce 
preliminary prediction results and an error sequence.

Step 4: Error Correction.  
The error sequence is decomposed using VMD, 

and each error sub-sequence is predicted using the 
Informer model. The results are then summed to obtain 
an error prediction result. The error sequence is added 
to the initial prediction results to obtain the final PM2.5 
concentration prediction results.

Results and Discussion

Data

As the capital of China, Beijing is not only the 
center for politics, culture, education, and international 
exchange, but it is also a highly populated and 
industrialized metropolis. In the past few years, 
Beijing has frequently faced severe air pollution issues, 
particularly concerning high concentrations of PM2.5, 
which have significantly impacted the quality of life and 
health of urban residents. Therefore, predicting PM2.5 
concentrations in Beijing holds particular importance.

Fig. 1. The flow chart of the proposed model. 
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The data used in this study are sourced from 
the public datasets provided by the China National 
Meteorological Information Center, specifically from 
the monitoring station numbered 1011A located near 
the Beijing Olympic Sports Center. The data encompass 
meteorological features and common pollutants, 
including PM2.5 measurements, collected from May 13, 
2014, at 8:00 AM to October 10, 2020, at 11:00 PM, with 
data sampled every hour. Considering the significant 
seasonal variations in PM2.5 concentrations in the Beijing 
area, to improve prediction accuracy, the original 
dataset is divided into four subsets corresponding to the 
seasons: spring, summer, autumn, and winter.

Each dataset includes meteorological features such as 
temperature, solar zenith angle, cloud opacity, dew point 
temperature, wind speed at 10 m height, wind direction 
at 10 m height, relative humidity, and atmospheric 
precipitable water. The selected common pollutants for 
the study are SO2, NO2, CO, O3, and PM10. The data 
splitting strategy for model training involves using the 
first 70% of the data as the training set, the following 
20% as the validation set, and the last 10% as the test set.

Evaluation Metrics

This paper selects three evaluation metrics, including 
Root Mean Square Error RMSE, Mean Absolute Error 
MAE, and the coefficient of determination R2. Their 
calculation formulas are as follows:

 
( )2

1
ˆ1 n

i i
i

RMSE X X
n =

= ∑ −
 (18)

 1

1 | |ˆn

i i
i

MAE X X
n =

= ∑ −
  (19)

 

( )
( )

2
i i2

2
1 i i

1
n

i

X X
R

X X=

−
= −

−
∑ 

  (20)

Optimized Decomposition Results

In Variational Mode Decomposition (VMD), the 
number of decomposition layers, K, and the penalty 
factor, ɑ, are critical factors affecting the performance of 
the algorithm and significantly influencing the outcomes 
of the decomposition. The decomposition layer K refers 
to the number of modes preset during the VMD process. 
If K is set too low, multiple modes may be merged; if K 
is too high, it may treat noise or irrelevant information 
as independent modes, increasing computational 
complexity and potentially introducing errors.

The penalty factor ɑ serves as a balance parameter for 
the constraints and is used to adjust the decomposition 
precision and smoothness in VMD. The value of ɑ 
determines the bandwidth during modal extraction, 

and the optimal value of ɑ can vary significantly 
depending on the type of signal and the level of noise. 
A larger ɑ results in smoother modal components but 
might overlook some subtle signal features; conversely,  
a smaller ɑ could lead to overly wide bandwidths, 
causing unclear boundaries between modes. In this case 
study, the RIME optimization algorithm is effectively 
used for parameter tuning. Arranged according  
to the seasons – spring, summer, autumn, and winter – 
the obtained values of K are 6, 6, 6, and 7, respectively, 
while the values of ɑ are 100, 100, 200, and 100, 
respectively.

Feature Selection Results

The results of feature selection for the four datasets 
corresponding to the seasons of spring, summer, autumn, 
and winter are shown in Table 1, where a checkmark 
() indicates that the feature was selected. The results 
in Table 1 illustrate that the features required for each 
seasonal dataset vary. Since PM10 includes PM2.5, the 
correlation between them might be high, making this 
feature frequently used. Additionally, wind speed can 
influence the dispersion and dilution of pollutants, 
and typically, higher wind speeds help reduce PM2.5 
concentrations. When humidity is high, atmospheric 
particulates can grow through vapor absorption and 
chemical reactions, potentially increasing PM2.5 
concentrations, which might explain why meteorological 
features such as Height 10 m, wind speed, and Relative 
humidity are often selected.

Comparative Experiments

We initially conducted forecasts using un-
decomposed data for the four seasons – spring, summer, 
autumn, and winter – employing predictive models 
such as Bi-LSTM, LSTM, CNN, and Informer, with 
their parameters optimized using the RIME algorithm. 
According to the results shown in Table 2, the Informer 
model consistently demonstrated the best predictive 
performance across all original datasets.

Further, the data for the four seasons were processed 
through modal decomposition, and the same four 
benchmark predictive models – Bi-LSTM, LSTM, 
CNN, and Informer – were applied again. After modal 
decomposition, the predictive results of each mode were 
summed to derive the final forecast for each season.  
As indicated by the results in Table 2, the Informer 
model continued to exhibit the best forecasting 
performance on the seasonally decomposed datasets. 
Therefore, in this case study, employing the Informer as 
the forecasting model is an appropriate choice.

Comparison of Feature Selection Methods

Building on the decomposition of the original time 
series, this study combines Multi-objective Feature 
Selection (MOFS) for predicting PM2.5 concentrations 



A Novel Hybrid Forecasting Model for PM2.5... 9

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

and compares the results with those obtained using 
two common single-objective optimization algorithms. 
The results demonstrate that the MOFS method 
outperforms the others when predicting summer data 
using the Informer model. Specifically, the Root Mean 
Square Error (RMSE) for MOFS is 42.1987, which is 
significantly lower than that of the Random Forest (RF) 
method at 65.3129 and the Mutual Information (MI) 

method at 68.4523, indicating superior performance. 
Similarly, in the prediction of winter data, the MOFS 
method excels, with a Coefficient of Determination (R²) 
reaching 0.9712, compared to 0.9258 for RF and 0.9207 
for MI.

Therefore, compared to traditional single-objective 
feature selection methods, the multi-objective feature 
selection approach exhibits better performance.  

Table 1. Multi-objective feature selection results and feature abbreviations.

Features
Spring Summer Autumn Winter

H M L H M L H M L H M L

TEM         

AZM  

CO(a)    

DPT 

APW      

RH           

GP         

HWD     

HWS           

ZA

SO2          

CO        

NO2            

O3        

PM10            

Xt-1    

Xt-2  

Xt-3    

Xt-4   

Xt-5    

Xt-6    

Xt-7    

Xt-8

Xt-9        

Xt-10        

Features Abbreviations Features Abbreviations
Temperature TEM Relative humidity RH

Azimuth AZM Ground pressure GP

Clouds opacity CO(a) Height 10m wind 
direction HWD

Dew point temperature DPT Height 10m wind speed HWS
Atmospheric precipitable water APW Zenith angle ZA

Notes: Features starting with Xt- represent lag variables.
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It effectively identifies the appropriate feature subsets, 
thereby enhancing the accuracy of predictions. Table 3 
displays the error metrics of the predictions using the 
MOFS method post-modal decomposition, alongside 

those using MI and RF methods. Fig. 2 illustrates 
the prediction results for each model after RIME 
optimization using the MOFS approach.

Table 2. Benchmark model predictions before and after decomposition.

Model
(undecomposed) Season RMSE MAE R² Model

(decomposed) RMSE MAE R²

Informer

Spring 72.4729 40.5198 0.9132

Informer

64.3245 37.2569 0.9351

Summer 77.8127 35.3712 0.9471 69.9871 33.4892 0.9589

Autumn 60.1376 26.6723 0.9015 54.7293 21.3891 0.9196

Winter 47.4692 25.5471 0.8943 42.3985 19.5128 0.9156

LSTM

Spring 101.5612 62.9837 0.8601

LSTM

93.4862 50.7823 0.8805

Summer 112.8794 60.6598 0.8107 103.5471 57.3219 0.8413

Autumn 85.2486 51.8713 0.7952 78.1129 49.5678 0.8287

Winter 81.6428 45.2156 0.8214 74.5832 40.3891 0.8496

CNN

Spring 91.7946 56.3427 0.8471

CNN

84.3562 53.4789 0.8712

Summer 92.4269 51.5698 0.8104 88.2173 48.7891 0.8329

Autumn 75.2073 35.6841 0.8268 69.3945 33.2567 0.8503

Winter 59.8715 28.5403 0.8689 55.6784 26.9812 0.8916

Bi-LSTM

Spring 76.6591 43.3286 0.8947

Bi-LSTM

71.2984 38.6789 0.9134

Summer 81.7834 40.4532 0.9097 72.4562 38.2945 0.9261

Autumn 67.3129 29.8798 0.8625 62.6793 28.1679 0.8853

Winter 48.5732 25.2314 0.8867 35.4891 24.3896 0.9148

Table 3. Results of prediction error metrics based on MI, RF, and MOFS.

Model Season RMSE MAE R² Model RMSE MAE R²

MI-Informer

Spring 61.2896 35.6783 0.9447

RF- 
Informer

58.4673 34.1897 0.9512

Summer 68.4523 32.1297 0.9623 65.3129 30.7894 0.9671

Autumn 51.8732 22.9874 0.9258 49.6894 21.6579 0.9304

Winter 40.1597 22.3789 0.9207 38.2145 21.5893 0.9258

MI-LSTM

Spring 90.2148 57.4691 0.8914

RF- 
LSTM

87.1293 55.7896 0.8997

Summer 100.2347 56.1982 0.8532 97.3185 54.3981 0.8639

Autumn 75.8973 48.2145 0.8369 73.5768 46.7892 0.8442

Winter 71.4321 40.7894 0.8573 68.9892 39.2146 0.8649

MI-CNN

Spring 81.2345 51.3579 0.8798

RF-CNN

78.4876 49.7893 0.8879

Summer 82.9784 47.2147 0.8427 80.9321 45.6312 0.8521

Autumn 65.7892 32.1543 0.8597 63.5821 31.4729 0.8674

Winter 53.4987 26.1298 0.8985 51.1298 25.3982 0.9052

MI-Bi-LSTM

Spring 69.1583 39.4671 0.9205

RF-Bi-
LSTM

67.4329 38.7891 0.9273

Summer 74.2398 37.4892 0.9317 72.1894 36.6712 0.9392

Autumn 60.4571 27.5893 0.8924 58.6712 26.9374 0.8991

Winter 44.3126 23.8795 0.9107 43.2985 23.1247 0.9184

Model Season RMSE MAE R²
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Table 3. Continued.

Fig. 2. Predictions for each model after RIME optimization using the MOFS approach.

MOFS-Informer

Spring 32.8749 21.2678 0.9791

Summer 42.1987 30.8756 0.9853

Autumn 20.8567 16.2348 0.9815

Winter 17.3468 9.1562 0.9712

MOFS-LSTM

Spring 38.7654 28.9345 0.9573

Summer 66.4123 48.3579 0.8942

Autumn 50.2341 35.9786 0.9001

Winter 26.7861 16.4672 0.9531

MOFS-CNN

Spring 34.1286 24.5691 0.9641

Summer 36.4823 19.8732 0.9759

Autumn 33.8562 24.1123 0.9589

Winter 39.2471 28.6839 0.9617

MOFS- Bi-LSTM

Spring 41.3571 26.7342 0.9602

Summer 38.6745 27.5938 0.9564

Autumn 28.9147 21.3572 0.9742

Winter 23.5821 18.4673 0.9758
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Error Correction with Decomposition

The error sequence is decomposed using Variational 
Mode Decomposition (VMD), and each decomposed 
error subsequence is then predicted using the Informer 
model. The predictions of these subsequences are 
summed to derive the error prediction results. The error 
sequence is then added to the initial prediction results to 
yield the final PM2.5 concentration predictions. 

To validate the adaptability of the proposed model, 
forecasts were also carried out using data collected from 
monitoring stations coded 1052A in Baoding and 1352A 
in Guangzhou. Baoding, located to the south of Beijing, 
shares a similar geographical position and is likewise 
subjected to severe smog pollution, characteristic of 
this region. Both cities are influenced by surrounding 
industrial zones and agricultural activities; however, 
Baoding also possesses its own unique sources of 

pollution, such as significant industrial emissions.  
In contrast, Guangzhou is situated in the southern part 
of China, within the Pearl River Delta, and experiences 
a subtropical monsoon climate that is markedly different 
from Beijing’s temperate monsoon climate. The high 
temperatures and humidity typical of Guangzhou, 
combined with the complex interactions between 
land and sea, pose distinct challenges for air quality 
models. These conditions are invaluable for testing 
the adaptability of the model under varying climatic 
conditions and diverse pollution sources. Table 4 displays 
the final prediction results of the model proposed in 
this paper, and Fig. 3 illustrates a comparison of the 
prediction results before and after error correction. 
It is evident that the model proposed in this paper 
exhibits excellent accuracy and performance, effectively 
accomplishing the task of accurately predicting PM2.5 
concentrations.

Fig. 3. Comparison of partial prediction results before and after error correction (Beijing 1011A, Autumn).

Table 4. Final predictions of the proposed model.

Site Season RMSE MAE R²

Beijing 1011A

Spring 27.3265 16.3870 0.9901

Summer 35.8367 21.8365 0.9953

Autumn 17.3290 10.2351 0.9908

Winter 13.3218 7.3261 0.9836

Baoding 1052A

Spring 25.4261 13.0428 0.9892

Summer 37.1246 22.5873 0.9848

Autumn 18.1456 10.7481 0.9904

Winter 22.8971 15.6394 0.9875

Guangzhou 1352A

Spring 36.7893 28.9821 0.9797

Summer 36.5812 22.3186 0.9951

Autumn 22.8569 13.5509 0.9910

Winter 18.7640 11.0108 0.9842
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Conclusions

Accurate prediction of PM2.5 concentrations 
is of paramount importance for public health and 
environmental protection, as the level of these 
concentrations directly relates to air quality and has 
become a global focal point due to its impact on human 
health. Long-term exposure to high concentrations of 
PM2.5 increases the risk of respiratory and cardiovascular 
diseases, especially in urban areas. Thus, predicting 
PM2.5 is crucial for environmental monitoring, pollution 
alerts, and health risk assessments.

To address the nonlinearity and complexity of 
predicting PM2.5 concentrations, this paper presents a 
novel hybrid model for PM2.5 concentration prediction. 
This model initially decomposes the historical  
PM2.5 data using VMD, optimized by the RIME 
algorithm, to extract several intrinsic modal components 
and a residual component. Subsequently, based 
on sample entropy values, these components are 
restructured into high, medium, and low-frequency 
components. Then, the MOFS method is employed 
to select the most influential feature subsets from 
meteorological conditions and historical data. Finally, 
the optimized Informer model is used for concentration 
prediction and error correction to obtain the final 
prediction results.

Experimental results demonstrate that this model 
surpasses other single and hybrid models in all 
evaluation metrics. These achievements indicate 
that RIME effectively selects the key parameters for 
VMD, enhancing the applicability and decomposition 
efficiency of VMD in processing PM2.5 data while 
also reducing the volatility and chaos of the original 
data. The MOFS method integrates the advantages 
of wrappers and filters, providing a more stable and 
reasonable feature combination compared to standalone 
feature selection algorithms, thereby reducing model 
complexity and enhancing prediction efficiency  
and accuracy. Additionally, RIME effectively explores 
the hyperparameter space of the Informer model,  
aiding the model in achieving higher prediction  
accuracy and stability. The optimized Informer, 
combined with an error correction model with 
decomposition (ECD), achieves accurate PM2.5 
concentration predictions. The hybrid model proposed 
in this paper considers potential issues in the prediction 
process and combines the strengths of each module 
to accurately predict PM2.5 concentrations, enriching 
the technological tools in this field and providing 
valuable quantitative references for public health and 
environmental protection.
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