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Abstract

Understanding the efficiency of green innovation in the logistics industry can drive sustainable 
development in China. However, there is a lack of evolutionary patterns and drivers of green innovation 
efficiency in the logistics industry. We examine the evolutionary patterns of green innovation efficiency 
in the logistics industry and identify its drivers across 30 provinces and cities in China from 2012-2021. 
This study examines the evolutionary patterns of green innovation efficiency in the logistics industry 
and identifies its drivers across 30 provinces and cities in China. It was discovered that there has been a 
consistent upward trend in the logistics sector's degree of green innovation efficiency. The eastern region 
exhibits the greatest average values across three indices of green innovation efficiency, with significant 
regional differentiation that decreases gradually from east to west. The overall spatial network displays 
an uneven pattern, with the central east showing higher efficiency and the west showing lower efficiency. 
Drivers such as spatial proximity, industrial structure, scientific and technological levels, and energy 
utilization significantly affect green innovation efficiency (P < 0.05). We underscore the importance of 
promoting regional cooperation and exchange, strengthening industrial restructuring and upgrading, 
and enhancing science, technology, and energy utilization to unleash the logistics industry's potential 
for green innovation.

Keywords: green innovation efficiency, SBM, social network analysis, influencing factors, spatial network 
structure, logistics
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Introduction

As a key industry, logistics plays a crucial role in 
social production. In 2022, China's logistics industry 
was valued at 34.76 billion yuan, making up 14.7% of 
the nation's GDP. However, the growth of the industry * e-mail: wyp79055@hpu.edu.cn
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has resulted in significant energy depletion and pollution 
of the environment. Carbon emissions from China's 
logistics sector increased from 6.3% of the national 
total in 2012 to 11% in 2021. Green innovation is vital 
because it encourages a balance between environmental 
preservation logistics[1-3]. Improving green innovation's 
effectiveness in the logistics industry is crucial to 
creating higher value with minimal cost and resources.

Efficiency in green innovation efficiency (GIE) is 
the degree to which innovation processes integrate 
ecological benefits and economic gains. Green 
innovation efficiency in the logistics industry refers to 
the efficiency of resource utilization in the innovation 
process of the logistics industry, especially innovation 
activities related to environmental protection and 
sustainable development. It involves the adoption of 
new technologies and methods by logistics enterprises 
in transport, warehousing, packaging, and distribution 
to reduce energy consumption, lower environmental 
pollution, and enhance the greening of logistics services 
while maintaining or improving the economic efficiency 
of logistics services [4]. Current research primarily 
focuses on quantitative measurement, using input-output 
indicators. Common measurement models include 
the Data Envelopment Analysis (DEA) model [5], the 
Malmquist model [6], and the modified gravity model [7]. 
Studies indicate that key areas of GIE are manufacturing 
[8], industrial [9], and high-tech industries [10], as well 
as various regional levels [11-13]. Teng Tang Wei et al. 
(2023) observed a fluctuating upward trend in the GIE 
of cities in the Yangtze River Delta, with noticeable 
regional variation, displaying a distribution structure 
that is high in the south and low in the north [14]. Lu Yan 
Wei (2023) found that the digital economy significantly 
boosts GIE, with noticeable spatial overflow effects and 
spatio-temporal heterogeneity in the effect of the digital 
economy on GIE [15]. Li et al. (2023) identified four 
primary routes of green innovation in cities, including 
the results-driven innovation road, the open inclusive 
culture path, the integrated creative innovation path, and 
the open participation innovation integration way [16]. 
Zhou et al. (2023) noted that while China has a low total 
effectiveness in green innovation, it is steadily growing, 
with significant provincial differences at various phases 
of excellent development [11]. Scholars also examine the 
qualitative measurement of spatio-temporal evolutionary 
patterns and factors affecting GIE.

Numerous studies have demonstrated that GIE exerts 
a significant regional spillover effect. Investigating 
GIE aids in enhancing it within neighboring areas [17-
19]. Commonly, researchers utilize Moran's index [20] 
and spatial measurement models [13] to analyze the 
spatial spillovers of GIE. For instance, Zhang Feng and 
colleagues (2023) observed a spatial correlation network 
in the equipment manufacturing industry along high-
speed railways, characterized by a "dense at both ends 
and sparse in the middle" pattern, with fluctuating 
growth in network relationships and density, exhibiting a 
significant small-world network property[8]. Cao Zheng 

Xu and associates (2023) noted regional disparities in 
the industrial corporations' GIE, with "high R&D-high 
translation" provinces predominantly in the region of 
the east, while the western and central areas mainly 
feature "high R&D-low translation" or "low R&D-
high translation" provinces, highlighting various stages 
of innovation shortcomings [9]. Wang Chuan Xu et al. 
(2016) discovered spatial spillover effects in the GIE of 
provincial high-tech industries, where indirect and total 
effects align with the direct effects' direction of impact 
on the high-tech industries' GIE [21]. Chang Zhe Ren 
and colleagues (2023) found that synergistic industrial 
agglomeration significantly boosts GIE in municipalities 
in an area and creates spatial spillover effects in adjacent 
areas [22], indicating diverse spatial evolution variations 
in GIE across industries.

Enhancements in GIE stem from several drivers, 
primarily categorized into immediate and circumstantial 
factors. Immediate factors include S&T R&D investment 
[23, 24], industrial structure [11, 25, 26], talent 
investment [27, 28], resource consumption structure [29, 
30], and the technological innovation environment [31, 
32]. Indirect factors encompass openness to the outside 
world [11, 26, 33], population size [34], market demand 
[32, 35], government policy support [25, 36, 37], and 
infrastructure development [38-40]. Studies reveal 
that the same factor has different effects on GIE across 
industries. For example, Zhang et al. (2023) found that 
policy factors significantly influence industrial GIE 
[41]. Ye et al. (2023) found that policy factors have a 
significant positive effect on GIE in the logistics industry 
[42]. Wang et al. (2023), but have no significant effect on 
manufacturing industry green development levels [43]. 
Wu Yu Meng and Wang Ting (2023) identified a positive 
association between the degree of economic growth 
and GIE in Chinese industry [26]. This underscores the 
importance of recognizing industry-specific differences 
when assessing how various aspects affect the 
effectiveness of green innovation. Li Gen et al. (2023) 
reported a negative impact of innovation economic 
inputs on industrial GIE in various regional contexts 
[44]. Wu Chuan Qing et al. (2022) found a significant 
negative impact of population size on manufacturing 
sector greening [45]. Yao Meng Chao and colleagues 
(2022) noted that governmental science and technology 
finance and informatization positively contribute to 
high-tech industries' GIE, whereas openness to the 
outside world has a dampening effect [46]. Wang et 
al. (2022) discovered that specialized agglomeration 
inhibits GIE in high-tech sectors in China, with the 
inhibitory effect intensifying with regional population 
size [47], highlighting the need for industry-specific 
factor analysis due to the differing effects across 
industries.

The growth of the logistics industry, with a focus on 
green and innovative practices, plays a vital function 
in shaping China's logistics sector. Current research 
primarily explores aspects of green efficiency and 
innovation. Zhao Jing Cheng and colleagues (2023) 
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observed a positive spatial relevance in the efficiency 
of the logistics industry spanning 11 provinces and 
cities within the Yangtze River Economic Belt, noting 
an annual increase and a growing interconnectivity 
between these regions [48]. Yi Yan (2023) reported that 
the green efficiency of the logistics sector in the eastern 
region outperforms that of the western and central areas, 
highlighting a correlation between the green efficiency of 
the logistics sector in the western and central areas and 
the eastern region [49]. Hua Jun Nan and team (2024) 
discovered that the efficiency's spatial correlation effect 
of the logistics industry extends beyond geographical 
proximity, leading to a more stable yet dispersed spatial 
correlation network structure [50]. Sun Chun Xiao and 
colleagues (2021) found significant expansion in the 
spatial network scale of city logistics creativity in China 
from 2003 to 2018, with the network densifying and its 
scale-free characteristic diminishing [51].

Research across various industries, including 
manufacturing [8], industry [9], and high-tech industry 
[10], has demonstrated the strong spatial dependence of 
GIE. The establishment of logistics networks facilitates 
the interconnection of cross-regional economic 
activities, reinforcing the presence of spatial dependence 
in logistics efficiency studies. Green innovation in 
the logistics sector potentially creates spatial effects 
through its network, fostering a self-enhancing cycle 
of communication, knowledge sharing, technology 
diffusion, and resource sharing [52]. Hence, to offer 
more comprehensive and sustainable development 
recommendations for China's logistics sector, it is vital 
to consider the GIE. The Chinese government aims 
to explore policies for optimal resource allocation 
and sustainable development tailored to regional 
characteristics. However, the research in this domain 
remains insufficient, necessitating a spatial analysis 
of GIE in the logistics sector to better understand its 
impacts and potential.

This study significantly contributes to understanding 
the GIE of the logistics sector. (1) Previous research 
primarily focused on measuring and forecasting 
logistics efficiency indicators across various regions, 
lacking a comprehensive examination of greenness, 
innovation, and efficiency simultaneously. GIE is crucial 
for assessing the logistics industry's development in 
each region. This article develops a system of indexes 
for GIE in the logistics sector and quantifies it in 30 
Chinese municipalities and provinces in recent years. (2) 
Prior studies have seldom explored GIE in the Chinese 
logistics sector, particularly considering spatial effects. 
This study investigates the spatial effect distribution law 
of GIE in the Chinese logistics sector, enhancing our 
understanding of its sustainable development. Earlier 
research has examined the drivers of logistics efficiency 
and innovation but has not adequately addressed the GIE 
of the logistics industry. (3) In previous studies, only the 
drivers of logistics efficiency and logistics innovation 
have been studied, and there is a dearth of studies on 
the drivers of GIE in the logistics sector. However, 

China has many provincial and municipal regions with 
varying degrees of development; particularly, variations 
in efficiency across provinces and municipalities have 
been brought about by the impact of drivers on green 
innovation efficacy in the logistics sector. Therefore, 
identifying the drivers of GIE in the logistics sector is 
important for the growth of the logistics industry.

Research on China's logistics industry should 
prioritize improving GIE. This involves addressing 
challenges such as reconciling industry development 
with environmental protection, leveraging geographical 
and resource advantages in different regions, and 
devising region-specific sustainable development 
policies. This study introduces the SBM super-efficiency 
model to gauge the GIE of the logistics sector in 30 
provinces and cities in China from 2012 to 2021. It also 
employs social network analysis to outline the spatial 
distribution features and evolutionary trends of GIE. 
Additionally, the study uses QAP analysis to investigate 
drivers. These findings offer theoretical insights and 
policy guidelines for promoting the logistics industry's 
green development and its sustainable progression. 
Moreover, they provide model frameworks for 
researching GIE in other sectors.

The paper is structured as follows: Section 2 
describes the research methodology used in this paper 
and the process of constructing and selecting green 
innovation efficiency indicators, as well as the relevant 
data sources. Section 3 analyzes the empirical results. 
Section 4 provides a discussion. Section 5 draws 
research conclusions and recommendations.

Methods and Data

Research Methods

Green Innovation Efficiency Measurement 
Model for the Logistics Industry

(1) Measurement methods
The GIE of China's logistics sector is assessed in 

this study using the SBM super-efficiency mode [53]. 
The dynamic changes in GIE within this industry are 
investigated through the application of the MI index 
approach.

While DEA is a widely accepted approach for 
efficiency measurement, traditional DEA models face 
challenges in addressing slackness in output and input 
factors, potentially compromising efficiency accuracy 
[54]. To overcome these limitations, the SBM super-
efficiency model, introduced by Tone [55], is chosen for 
its capacity to simultaneously consider inputs, desired 
outputs, and undesired outputs. This model has gained 
popularity across various fields for its comprehensive 
analysis capabilities. Accordingly, the article adopts the 
SBM for assessing the GIE of China's logistics sector. 
The model's formula is outlined below:
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  (1)

The efficiency value is represented by ρSE, with x and 
y indicating the input and output elements, respectively. 
The model includes m input indicators and s output 
indicators, with i and j representing the decision-making 
units for inputs and outputs S+ and S⁻ denote the input 
and output slack, respectively. rj denotes the vector of 
weights.

Additionally, the study applies Malmquist index 
(MI) analysis to track the evolution of total factor 
productivity, focusing on addressing undesired output 
[56]. The MI is grounded in DEA models, and the core 
of the MI is to solve the problem of undesired output 
[54, 57]. Therefore, this study applied the MI analysis 
to analyze the dynamic variations in GIE in the Chinese 
logistics industry. This involves defining a directional 
distance function and constructing a global total factor 
productivity (MI) by integrating GIE measures specific 
to the logistics sector.

  (2)

  (3)

In the formula, Eg,t(xt, yt, zt) denotes the global 
efficiency value in period t, Eg,t+1(xt+1, yt+1, zt+1)  denotes 
the global efficiency value in period t + 1, and MIt,t+1 
denotes the total factor productivity index from period 
t to t + 1.

(2) Measurement indicators
The analysis categorizes GIE indicators into 

inputs and results measures. Input signals encompass 
investment expenditure [42], labor input [58], and energy 
input [4, 59]. Labor input is measured by the workforce 
size in transportation, storage, and postal services, while 
energy input is gauged by the sector's energy used by the 
industry. Because it is difficult to obtain direct data from 
Chinese yearbooks, the logistics sector's capital stock—
which is determined using the "perpetual inventory 
method"—infers capital input, which is impossible to 
assess directly.

  (4)

Where Κi,t and Κi,t-1  denote the capital stock of city 
i in year t and t − 1, respectively, Ii,t is the amount of 
fixed asset investment in city i in year t, and δ denotes 
the depreciation rate of fixed assets. After choosing a 
defined base period, the above equation is transformed 
by iteration, and its formula is as follows:

  (5)

In Equation (5), it is critical to calculate the 
investment amount, base period stock, and the economic 
depreciation rate for year i. For the investment amount 
in year i, considering the references from prior research 
and data availability, this study chooses the fixed asset 
investment as the reference data.  For determining the 
base period stock, this research refers to the initial 
stock proposed by Reindorf (2005), calculated using the 
following formula:

  (6)

I0 signifies the constant price investment during the 
base period, g stands for the average annual growth rate 
under constant price investment, δ indicates the average 
capital depreciation rate (the growth rate of fixed asset 
investment in each province and city for the year 2006 
was used for the 30 provinces and cities to determine 
this value) and the economic depreciation rate was 
calculated using a formula with a value of 9.6% [60].

Output metrics are categorized into desired and 
undesired outputs. Desired outputs are measured by 
freight turnover [58], the number of patents granted in 
the logistics sector [61], and the industry's value added; 
carbon dioxide emissions [3, 62] are identified as the 
undesired output, with fossil energy consumption used 
to estimate the carbon footprint of the logistics sector 
across 30 cities and provinces in China, calculated by 
the formula:

  (7)

Ei is the total consumption of energy source i, NCVi 
is the average low level heating value of energy source 
i, CEFi is the carbon emission factor of energy source i, 
and COFi is the carbon oxidation factor.

The details of the variables that are entering and 
leaving to assess the efficiency of green innovation in 
China's logistics industry are presented in Table 1.

Spatial Effect Measurement Model of Green 
Innovation Efficiency in the Logistics Industry

The spatial network structure of GIE in China's 
logistics industry is examined in this study using social 
network analysis, and the position and function of every 
municipality and province within the spatial network are 
analyzed using the plate model.

(1) Social Network Structure
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Social network analysis is utilized to depict 
cooperative relationships among nodes in urban 
network studies [63]. This study uses network density, 
network efficiency, and the degree of network level in 
social network analysis to explore the overall network 
characteristics of 30 provinces and cities, and employs 
point centrality, betweenness centrality, and closeness 
centrality to investigate the individual network features.

(2) Modified Gravity Model
Prior to conducting a social network study, a 

spatially related matrix is created. This is usually done 
by measuring the relationship strength and inherent 
connection mechanism of the spatial network connecting 
cities using the gravity model found in the literature 
[14]. The geographic relationship strength of innovative 
green efficiency in the logistics sector across 30 Chinese 
provinces and cities is measured in this study using a 
modified gravity model. The spatial relationship matrix 
is created using the following formula:

  (8)

  (9)

where S is the intensity of the spatial linkage of GIE 
in the logistics industry; Ei and Ej  denote the GIE of 
the logistics industry in regions i and j, respectively;  
Dij denotes the distance between regions i and j, with 
specific data derived from ArcGIS software; Gi and Gj 
denote the total GDP of regions i and j, respectively; and  
gi and gj denote the gross regional product of regions i 
and j, respectively.

The values of linkage strength less than 100 are 
hidden due to the large extreme difference in the 
strength of the association measured by the modified 
gravity model; therefore, linkage strength greater than 
100 is divided into four stages: the first stage, the second 
stage, the third stage, and the fourth stage. 

(3) Overall Network Architecture

Network density reflects the compactness of a spatial 
network's structure. A higher network density indicates 
more interconnected nodes and a greater influence of 
resource flow within the network on individual nodes 
[64, 65]. In this study, network density is quantified 
by comparing the actual number of links within the 
network to the maximum possible connections across 
the entire network. This ratio, which falls between 0 and 
1, is calculated as follows:

  (10)

where n denotes the number of cities and n×(n − 1) is 
the maximum number of possible correlations.

Network efficiency is defined by the number of 
superfluous connections in a network relative to a 
specific number of network members [66]. A lower 
network efficiency value suggests an increase in 
spillover channels among node cities, thereby stabilizing 
the network trend. The network efficiency calculation 
formula is

  (11)

where Κ is the number of excess lines, and max(K) 
is the maximum possible number of excess lines.

The network hierarchy indicates the rank of each 
node city or province within the network, denoting their 
importance and influence. A higher degree of network 
hierarchy enhances network accessibility and signifies 
a more stratified network structure. It is determined by 
the following formula:

  (12)

where M denotes the number of symmetrically 
reachable member pairs in the network and max(M) 
denotes the maximum possible number of symmetrically 
reachable member pairs.

(4) Individual Network Structure 

Type of indicator Level 1 indicators Secondary indicators Unit (of measure)

Input indicators

labor input Number of persons employed in the 
transport, storage, and postal sector Ten thousand people

Capital investment Capital stock Ten thousand yuan

Energy inputs Energy consumption in the logistics sector Tonnes of standard coal

Output indicators
Expected outputs

Patent grants Size

Freight turnover Tonnes

Value added of industries (value added of 
transport, storage, and postal services) Billions

Non-expected outputs Carbon dioxide emissions Tonnes

Table 1. An Index System for Evaluating Green Innovation Efficiency in the Logistics Sector.
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Point degree centrality refers to the radiation and 
absorption capacity of a node, province, or city within 
a network. The number of direct links between nodes 
is how it is expressed. Point-degree centrality can be 
further classified into point-in and point-out. Point-in 
represents the number of connections accessing a node, 
province, or city, indicating the extent to which it is 
influenced by other nodes in the network. On the other 
hand, point-out denotes the number of relationships sent 
out, indicating the ability of the node, province, or city 
to impact other nodes [66].

The degree of intermediary centrality characterizes 
the node's, province's, or city's ability to control and 
regulate each resource in the network [14]. This is 
calculated using the following formula:

  (13)
where gij is the number of associations that exist 

between regions i and j and gij(i) is the number of paths 
between i and j going through i

Proximity centrality measures the minimum distance 
between two cities or provinces, indicating the ease of 
resource transfer between provinces and municipalities 
[7]. It is determined by the following formula:

  (14)

where dij  is the straight-line distance between 
province and city i and province and city j is indicated.

(2) Plate Model

Plate modeling is a widely utilized method 
for analyzing spatial network structures through 
spatial clustering. It is crucial to clearly define the 
interconnections among locations within the plate 
structure during plate modeling [67]. These relationships 
can appear in four distinct forms. The first is the bilateral 
spillover plate, characterized by its dual role in both 
sending and receiving interactions with other plates, 
alongside maintaining numerous internal relationships. 
The second type is the main beneficiary sector, where 
the plate predominantly receives interactions, both 
internally and externally, rather than contributing 
spillover to other plates. The third form is the main 
overflow board, notable for its tendency to create more 
outgoing connections than it receives. The fourth type 
is the broker board, unique in its balance of incoming 
and outgoing links with a limited number of internal 
connections. This categorization led to the identification 
of four distinct segments, as detailed in Table 2.

Table 2 posits that block Gk includes city gk, the 
total number of potential relationships Gk within block 
is gk(gk − 1). Given that the spatial association network 
includes g cities; therefore, the number of possible 
relationships Gk in each block city is gk(g − 1) in the 
spatial association network, and the expected internal 
relationship ratio is gk(gk − 1)/gk(g − 1) − (gk − 1)/(g − 1) .

Logistics Green Innovation Efficiency 
Drivers Identification Model

(1) Measurement methods
The elements impacting the spatial network structure 

of GIE in the Chinese logistics sector are examined in 
this study using QAP analysis. QAP, a matrix algebra-
based method, is adept at assessing the similarity and 
correlation between two matrices [68].

The QAP correlation analysis involves initially 
randomizing the relation matrix, then comparing the 
similarity between the two matrices, determining the 
number of relations, and conducting non-parametric 
testing. The process entails: 1) treating all matrix 
values as vectors to compute the relationship coefficient 
between both vectors, 2) randomly replacing one 

Ratio of Inner 
Relations

Ratio for Accepted Connections

≈0 >0

≥(gk-1)/(g-1) Bilateral overflow 
panels

Main Beneficiary 
Sectors

<(gk-1)/(g-1) Main overflow 
boards Brokerage Board

Table 2. Specific categorization of the four sectors.

Drivers Variant Unit (of measure)

Spatial proximity Neighboring provinces are set to a value of 1 and 
non-neighboring provinces are set to 0 1 for neighboring, 0 for non-adjacent

Level of receptivity to external stimuli Total exports and imports by province and city as a 
percentage of GDP %

Industrial structure Share of tertiary sector value added in GDP %

Urbanization level (of a city or town) Ratio between the overall population and the urban 
population at the end of the year(%) %

Technological level Expenditure on R&D as a share of GDP %

Energy utilization Ratio of consolidated turnover to energy 
consumption %

Table 3. Explanatory variables of the spatial relationship network for innovative green efficiency in logistics.
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matrix, shuffling all its rows and columns, followed 
by computing and saving the relationship coefficients 
between the altered matrix and the original, 3) 
analyzing the distribution of correlation coefficients 
post-replacement to conduct QAP correlation.

QAP regression goes deeper, analyzing and assessing 
the importance of the correlations between individual 
matrices and many matrices. It includes 1) conducting 
multiple regression analyses on all independent variable 
matrices against the elements of the dependent variable 
matrix, and 2) recalculating the regression after 
randomly rearranging the dependent variable matrix's 
rows and columns storing all of the obtained coefficient 
values.

(2) Measurement indicators
This study analyzes six dimensions: spatial 

proximity, extent of opening to the outside world, 
industrial structure, level of urbanization, degree of 
technological and scientific advancement, , and energy 
intensity. These dimensions are based on relevant 
studies by scholars [2, 39, 69]. The spatial matrix of 
innovative green efficiency in the logistics sector serves 
as an explanatory variable for data processing. The 
values of the indicators are represented as difference 
matrices, detailed in Table 3.

 Study Area and Data Sources

Data collection for Tibet, Macau, Hong Kong, and 
Taiwan proved challenging, leading to their exclusion 
from this study. Therefore, the regional focus of this 
paper is outlined in Table 4. The Eastern, Central, 
and Western regions are used in this study's partition 
of 30 provinces and cities in order to investigate the 
spatial variability of GIE in the logistics sector. This 
classification is based on economic development tactics 
like "Western Creation", "Central China's Rise", and 
"Priority Development of Eastern China". The 30 
provinces and cities mentioned above are divided into 

three regions, namely the Eastern, Central, and Western 
regions. The breakdown of these regions is shown in 
Table 4.

The GIE in the logistics sector in the previously 
specified regions is the subject of the research. The 
article examines the spatial network structure and 
determinants of GIE in the Chinese logistics sector 
using panel data collected between 2012 and 2021. 
National statistics do not clearly classify the logistics 
sector, so information from the "transport, storage, and 
postal services industry" is utilized as a stand-in. The 
China Statistical Yearbook, the China Energy Statistical 
Yearbook, the 2006 IPCC Guidelines for National 
Greenhouse Gas Inventories, and other provincial and 
city yearbooks from 2013 to 2022 are the data sources. 
Patent data in the logistics sector is sourced from the 
Key Industry Information Service Platform of the China 
Intellectual Property Office. For a small amount of 
missing and difficult-to-trace data, linear interpolation 
with averaging was used for smoothing to ensure data 
consistency and validity.

Results

Assessment Findings of the Logistics Sector's 
Green Innovation Efficiency Evaluation

The spatial distribution of GIE in the Chinese 
logistics sector for 2021 is depicted in Fig. 1. The 
logistics sector in eastern China has a higher total 
innovative green efficiency value in 2021, which is 
mostly spread in the two regions with darker hues. 
The map's darker colors represent the Eastern region, 
which exhibits the best efficiency. The region to the 
west has the smallest efficiency and is represented with 
the lightest hues, while the central region follows with 
lighter tones. The overall trend is East > Central > West.

District Province District Province District Province

East part

Beijing

Center middle

Shanxi

Western part

Sichuan

Tianjin
Inner Mongolia

Guizhou

Hebei Yunnan

Liaoning Jilin Shaanxi

Shanghai Heilongjiang Gansu

Jiangsu Anhui Qinghai

Zhejiang Jiangxi
Ningxia

Fujian Henan

Shandong Hubei
Xinjiang

Guangdong Hunan

Hainan Guangxi Chongqing

Table 4. Regional division of 30 provinces and cities in China.
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Fig. 2 shows the results of the research, which 
measured the GIE of the logistics sector in 30 Chinese 
municipalities and provinces between 2012 and 2021. 
The findings reveal an average innovative green 
efficiency value of 0.562, indicating generally low 
efficiency across the board. Additionally, the results 
highlight a significant variation in regional development 
levels, with Hebei, Tianjin, and Jiangsu provinces 
demonstrating efficiency values above 1, in contrast to 
Heilongjiang and Qinghai provinces, which consistently 
recorded values below 0.3.

Fig. 3 shows more analysis of the mean amount for 
the GIE index for every province and municipality. 
Here, 24 provinces and cities scored a mean value of 
the MI index above 1, signifying positive progress in 
the GIE of the logistics sector within these regions. 
Hainan Province led with the highest MI index average 
of 1.518, followed by Beijing and Yunnan. Conversely, 
Tianjin recorded the lowest MI index average at 0.937. 
Nonetheless, it showed progress in technical efficiency 
with a mean EC index value of 1.085, but a decline in 
technical progress with a TC index value of 0.956.

Fig. 1. Current status of green innovation efficiency in the logistics industry.

Fig. 2. Innovative green efficiency measurement findings in the logistics sector.
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 Results of Measuring the Spatial Effects of Green 
Innovation Efficiency in the Logistics Industry

 Overall Network Structure

This study examines the spatial network framework 
of innovative green efficiency in the Chinese logistics 
sector, treating each province and city as a network 
node and analyzing the connection strengths between 
them using ArcGIS tools. The results, illustrated in Fig. 
4, reveal a considerable variance in the spatial network 
structure across the 30 provinces and cities studied. 
The overall spatial network displays an imbalanced 
distribution, with the eastern and central regions 
having lower levels of innovative green efficiency and 
the western regions having greater levels. The eastern 
region's network is anchored by the initial and second 
levels, while in the central region, the 3rd and 4th order 
links rely on a minimal presence of initial and second 
order links. The western region is characterized by a 
predominance of third and fourth level links, albeit with 
fewer connections overall. The majority of China's most 
connected provinces and cities are found in the country's 
east and center, while the majority of its least connected 
provinces and cities are found in the country's center and 
west, particularly in Xinjiang, Qinghai, and Ningxia.

Fig. 5 displays the results of the study's computation 
of the network density, network efficiency, and network 
hierarchy of the spatial connection of innovative green 
efficiency in the logistics sector. It was observed that 
the network density increased gradually over the 
study period, peaking in 2021. In contrast, the overall 
network efficiency showed a declining tendency, with 
the highest efficiency recorded in 2012 and the lowest in 

2021, averaging 0.623. Similarly, the network hierarchy 
decreased over time, with an average value of 0.1208.

 Individual Network Structure

The spatial distribution of the point-entry degree in 
the GIE network within the logistics sector among 30 
Chinese municipalities and provinces for the years 2012, 
2017, and 2021 is depicted in Fig. 6. The areas with 
higher point-entry degrees are predominantly located 
in the eastern region. In 2012, Tianjin and Shanghai led 
the first tier, followed by Beijing, Jiangsu, and Guizhou 
in the second tier. Between 2012 and 2017, Beijing 
ascended to the first tier, with Fujian and Zhejiang 
provinces advancing to the second-highest value area. 
From 2017 to 2021, the second tier expanded westward 
around the first tier. Xinjiang consistently remained in 
the low-value tier, and in 2021, Qinghai Province moved 
up from the fourth to the third tier.

For the same set of cities and provinces in the same 
years, Fig. 7 shows the spatial distribution of the point-
out degree in the GIE network. In 2012, the first tier 
included Tianjin, Jiangsu, Shanghai, and Beijing, while 
the second tier comprised Shandong and Zhejiang 
provinces. From 2012 to 2017, the first tier expanded, 
and the second tier spread southward, forming a 
cluster with Shandong, Jiangsu, Shanghai, Zhejiang, 
Fujian, Guangdong provinces, and Beijing and Tianjin 
municipalities as localized central hubs. Between 2017 
and 2021, the first tier continued to grow, with Hubei 
Province and Chongqing Municipality rising to this 
tier, and several provinces moving from the third to 
the second tier. The fourth tier was mainly in western 
China.

Fig. 3. The mean value of the logistics sector's green innovation efficiency index for every province and city.
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The analysis of both point-in and point-out degrees 
reveals a consistent correlation between the two, i.e., the 
high and low point-in rankings of provinces and cities 
are consistent with point-out. This indicates that there is 
a bidirectional link in innovative green efficiency within 
the logistics sector. Higher degrees in both metrics are 
typically associated with more sophisticated logistics in 
provinces and cities.

Fig. 8 displays the spatial distribution of the GIE 
network's mediating centrality degree. In 2012, Beijing, 
Tianjin, and Shanghai were in the first tier. By 2017, 
Jiangsu Province had moved up to the first tier, with 
Zhejiang and Fujian provinces advancing to the second 
tier and Jiangxi Province dropping to the third tier. By 
2021, there was a general decline in mediating centrality 
values across most provinces and cities, with Hunan, 

Fig. 4. Spatial correlation network of innovative green efficiency in the logistics industry.

Fig. 5. Network correlation of innovative green efficiency in the logistics sector from 2012 to 2021.
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Fig. 6. Spatial distribution of point penetration of an innovative green efficiency spatial connection network in the logistics industry.

Fig. 7. Spatial distribution of an innovative green efficiency spatial connection network in the logistics industry.
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Guizhou, and Guangxi falling to the fourth tier and 
diminishing their role as network bridges.

Fig. 9 shows the spatial distribution of proximity 
centrality from 2012 to 2021. Initially, the first tier 
included Tianjin and Shanghai, with Beijing and 
Guizhou in the second tier. By 2017, proximity centrality 
values had significantly increased across all regions, 
with all provinces and municipalities in the third tier or 
higher. In 2021, the trend continued, with Heilongjiang, 
Xinjiang, and Qinghai in the third tier, and the rest in 
the second tier or higher. The first tier mainly consists 
of economically advanced provinces and cities, which 
form the core of the network and can quickly establish 
connections with others, while the second tier includes 
peripheral regions, where geographical factors may 
limit interaction and depend on the development of 
central areas.

 Plate Structure Analysis

These 30 cities are categorized into four segments, 
with the cities in each segment listed in Table 5. The 
spatial linkages and spillover effects among these 
segments are detailed in Table 9.

Table 6 reveals that out of 456 spatial correlations, 
52 are within segments and 404 are between segments, 
accounting for 88.6% of inter-segment correlations. 

For the first segment, it receives 17 internal and 128 
external relationships, with 113 spillovers coming 
from outside the segment. The anticipated internal 
relations ratio was 37.93%, but the actual figure was 
only 13.08%, indicating prevalent "two-way spillovers." 
In the second segment, there are 103 outside and 15 
inner receiving relationships, with 60 spillovers from 
outside, leading to an actual internal relations ratio of 
20% against a forecasted 27.59%, marking it as the 
"primary beneficiary effect." The third segment shows 
15 internal and 95 external receiving relationships, 
with 150 external spillovers. Its internal relational rate 
was expected to be 17.24% but turned out to be 9.09%, 
classifying it as a "major spillover effect" area. The 
fourth segment has 5 internal and 78 external receiving 
relationships, with 81 external spillovers. Its internal 
relations ratio, projected at 6.9%, was actually 5.81%, 
making this segment a broker segment.

The density matrix between the segments is 
computed in this study in order to further investigate 
the correlation. The multivalued density is also 
converted into an image matrix. Taking the average 
spatial association network density of the study object, 
0.4897, as a benchmark, values in the network density 
matrix greater than 0.4897 indicate a density level 
above the overall network level, denoted as 1; otherwise, 
it is denoted as 0. The distribution of GIE spillovers 

Fig. 8. Spatial distribution of the mediated centrality of spatially relevant networks for green innovation efficiency in the logistics 
industry.
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is demonstrated by the results, which are displayed 
in Table 7. In the density matrix, the magnitude and 
intensity of spillover impacts are directly correlated. 
The findings indicate spillovers from the first segment 
primarily affect the third and fourth segments. The 
second segment's spillover effects mainly impact the 
fourth segment, while the third and fourth segments 
influence all segments. In the image matrix, the first 
segment is a bi-directional spillover segment with a 
value of 1 with the third and fourth segments and a value 
of 0 with the others. The second segment, identified as 
the main beneficiary segment, has a value of 1 only with 
the fourth segment. Both the third and fourth segments 
have a value of 1 for all segments.

The internal relationships between the various 
innovative green efficiency segments in the Chinese 

logistics sector are depicted in Fig. 10. The foremost 
segment acts as the primary driver of innovative green 
efficiency, while the fourth segment serves as a pivotal 
bridge in the transmission mechanism, highlighting a 
pronounced disparity between the GIE segments of the 
logistics sector.

Analysis of Drivers of Green Innovation 
Efficiency in the Logistics Sector

The analysis of drivers, as presented in Table 8, 
shows that all six elements passed the correlation test 
(P < 0.1). The openness to the outside world is not 
significant at the 10 percent level, according to the QAP 
regression analysis outcome, which is shown in Table 9. 
Consequently, the spatial network framework for GIE 

Fig. 9. The spatial relationship network of green innovation efficiency in the logistics industry is close to the spatial distribution of 
centrality.

Continental plate Municipalities

Plate I Hainan, Hebei, Yunnan, Guangxi, Guizhou, Hunan, Shanxi, Jiangxi, Henan, Anhui, Sichuan, and 
Ningxia

Plate II Shaanxi, Heilongjiang, Liaoning, Gansu, Shandong, Qinghai, Inner Mongolia, Xinjiang, and Jilin

Plate III Zhejiang, Guangdong, Chongqing, Fujian, Tianjin, and Hubei

Plate IV Beijing, Shanghai, and Jiangsu

Table 5. Distribution of cities in the four sectors.
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in the Chinese logistics sector is primarily influenced 
by five factors: spatial proximity, industrial structure, 
technological level, energy use rate, and urbanization 
level. Spatial proximity is positively correlated at the 1% 
level, indicating it is the largest driver. This suggests that 
closer geographical proximity between cities enhances 
spatial correlations and spillovers in the spatial network 
structure of GIE within the logistics sector across 
Chinese provinces and cities.

Discussion

Improving the efficiency of green innovation is the 
key to promoting the sustainable development of China's 
logistics industry. This paper uses the SBM super-
efficiency model, social network analysis, and QAP 
to study the GIE of China's logistics industry, which 
enhances previous research in the field. The results of 
the study show that the overall GIE of China's logistics 
industry is on the rise from 2012 to 2021, which is 
similar to the results of Zhuang Hua et al.'s (2022) study 
on China's GIE. Although the GIE of China's logistics 
industry is improving, issues such as energy utilization 
and science and technology expenditure in the logistics 
industry have led to slow growth in GIE in most cities. 
Therefore, the pertinent agencies ought to pay more 
attention to the logistics sector, make better use of 
resources for green innovation, and quicken the process 
of increasing the sector's efficiency in green innovation.

At the provincial level, the study observes a gradual 
decline in the logistics industry's GIE from east to 

west, mirroring Yating Zhao's (2023) research on 
green technology innovation efficiency across Chinese 
provinces. Tianjin, Hebei, and Jiangsu provinces 
consistently lead in terms of GIE, indicating efficient 
use of logistics resources, higher levels of green 
development, and stronger innovation capabilities. 
Conversely, Qinghai, Gansu, and Xinjiang exhibit low 
GIE values because of their underdeveloped economies 
and minimal investment in capital, labor, and technology 
within the logistics sector. Therefore, by leveraging 
information technology through the development of 
logistics information platforms and other strategies, 
these areas can enhance logistics activity efficiency, 
accelerate logistics element transmission, and boost GIE 
in the logistics sector through increased investment in 
human and equipment resources.

Within the overall network structure, there is a 
trend showing that the GIE within the logistics industry 
across 30 Chinese provinces and cities is higher in the 
Middle East and lower in the West. This pattern matches 
the results of Cao Zheng Xu et al. (2023) on the GIE 
of industrial firms in China. The regions in the east 
and central enjoy higher efficiency due to their robust 
economic foundations and advanced technological 
capabilities. Conversely, the western region's 
geographical remoteness places it at a disadvantage 
in terms of GIE within the logistics sector. From an 
individual network structure perspective, municipalities 
and provinces in the eastern part of China, which have 
a high degree of connectivity, demonstrate strong 
absorptive capacities. They leverage logistics resources 
from associated regions to foster their economic 

Continental 
plate

Receiver relationship matrix
Number of 
cities in the 

sector

Proportion 
of desired 
internal 

relationships 
(%)

Proportion 
of actual 
internal 

relationships 
(%)

Diagnostic 
propertyPlate I Plate II Plate III Plate IV

Plate I 17 15 62 36 12 37.93 13.08 Bilateral 
spillover

Plate II 21 15 15 24 9 27.59 20.00 Main benefit

Plate III 71 61 15 18 6 17.24 9.09 Primary 
spillover

Plate IV 36 27 18 5 3 6.90 5.81 Middleman

Table 6. Spillover effects between the four sectors.

Density matrix Image matrix

Board I Board II Board III Board IV Board I Board II Board III Board IV

Board I 0.129 0.139 0.861 1.000 0 0 1 1

Board II 0.194 0.208 0.278 0.889 0 0 0 1

Board III 0.986 0.574 0.500 1.000 1 1 1 1

Board IV 1.000 1.000 1.000 0.833 1 1 1 1

Table 7. Density matrix and image matrix.
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development, resulting in a significant "siphon effect." 
Conversely, provinces and cities with extensive outreach 
are predominantly in China's more developed areas. 
They act as the "engine" of the spatial network structure 
for GIE in the logistics industry, driving development in 
neighboring cities. The intermediary centrality varies 
widely, with cities like Beijing, Tianjin, and Shanghai 
serving as "bridges" within the spatial network 
structure. In contrast, remote areas such as Hainan, 
Qinghai, and Xinjiang suffer from limited accessibility 

and a weak economic foundation, leading to minimal 
interactions with other regions. Establishing inter-
regional green innovation cooperation networks could 
enhance the spatial network structure of GIE in China's 
logistics industry, promoting more effective and stable 
communication and cooperation.

The spatial correlation among the four primary 
segments of GIE in the logistics industry reveals each 
segment's unique function within the spatial network 
structure. These segments collaborate, enhancing the 

Fig. 10. Correlation between the four major segments of green innovation efficiency in the logistics sector.

Driver Correlation 
coefficient

Significance 
level

Average 
value

Standard 
deviation

Minimum 
value

Maximum 
values P>=0 P<=0

Spatial proximity 0.189*** 0.001 0.002 0.048 −0.036 0.191 0.001 0.999

Extent of 
openness to the 
outside world

0.082* 0.104 0.000 0.057 −0.085 0.165 0.104 0.896

Industrial 
structure 0.15** 0.033 −0.001 0.06 −0.070 0.206 0.033 0.967

Urbanization level 
(of a city or town) 0.089* 0.095 0.000 0.056 −0.100 0.176 0.095 0.906

Technological 
level 0.124** 0.014 −0.001 0.054 −0.101 0.165 0.014 0.986

Energy utilization 0.132** 0.019 −0.002 0.054 −0.100 0.176 0.969 0.031

Table 8. Analysis results of QAP correlation elements of the spatial correlation network of green innovation efficiency in the logistics 
industry.
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network structure's connectivity. This observation 
is consistent with Wang et al.'s (2021) findings on 
the segment structure of GIE in China. The roles 
of Beijing, Shanghai, and Jiangsu as brokers are 
prominent, highlighting the importance of facilitating 
communication within the logistics industry's GIE 
segments. Enhancing interaction and information 
exchange among segments, fostering cooperation, and 
supporting the development of the western and central 
areas by the eastern areas are crucial. The "main 
beneficiary" segment should capitalize on the influence 
of other regions for high-quality development, while 
the "main overflow" segment needs to adhere strictly to 
green innovation and efficiency standards. For "bilateral 
spillover" segments, improving cooperation efficiency 
through resource and technology sharing is essential.

At the 1% level, there is a considerable correlation 
between geographic closeness and the study of drivers. 
This correlation shows that spatial location proximity 
has a notable effect on the structure of the spatial 
network of green innovation within China's logistics 
industry. This result is consistent with the study done by 
Yao et al. (2022), which also noted how spatial closeness 
affects green innovation. The concept of node centrality 
within this context implies that nodes with higher 
centrality exert more influence and control. Regions 
with high centrality not only influence but also create 
spillover effects on adjacent provinces and cities. This 
phenomenon can be attributed to the advanced economic 
development of these central regions, which exerts 
a broader economic influence and propels economic 
activities in neighboring areas through various channels. 
Furthermore, distance plays a critical role in the 
effectiveness of these spillovers between nodes; closer 
proximity facilitates easier and more natural exchanges 
of information and economic resources. Consequently, 
enhancing cooperation and coordination in green 
logistics innovation across provinces and cities is 
essential for promoting sustainable green innovation in 
the logistics industry. By doing so, it is possible to share 
resources more effectively, optimize transportation 
routes, improve energy efficiency, and reduce carbon 
emissions.

This study, however, is not without its limitations. 
For instance, the selection of evaluation indicators for 
GIE lacks comprehensiveness, focusing mainly on 
scientific and technological levels and patent numbers. 
Future research should develop a more inclusive 
indicator system for GIE in the logistics industry from a 
broader perspective.

Conclusion

This paper examines the efficiency of green 
innovation within China's logistics industry across 30 
provinces and cities from 2012 to 2021, analyzing its 
spatial distribution and determining factors. The study 
reveals spatial disparities in GIE across the nation. 
Regions with high efficiency, such as Tianjin, Hebei, 
and Jiangsu, are located in the eastern part of China. 
These areas benefit from advantageous geographic 
positions, advanced economic development, and 
superior logistics infrastructure. Conversely, regions 
like Xinjiang, Qinghai, and Heilongjiang in the west 
demonstrate lower efficiency, attributed to their vast 
geographic expanses, sparse population distribution, 
inadequate transportation facilities, and challenges in 
attracting skilled talent. As national science, technology, 
and economic levels advance, the GIE in China's 
logistics sector has shown consistent improvement, 
with a clear hierarchy of East > Central > West China. 
At the provincial level, significant disparities exist in 
GIE, highlighting pronounced regional differences 
and uneven development across various areas. Four 
key factors—spatial proximity, industrial structure, 
technological advancement, and energy utilization 
efficiency—significantly positively impact the sector's 
green innovation capabilities (P<0.05). Enhancing inter-
regional cooperation, refining the industrial framework, 
advancing technology, and boosting energy efficiency 
are pivotal strategies for fostering the logistics industry's 
green and innovative growth in China.

Driver Standardized 
regression

Probability of 
significance value Probability 1 Probability 2

Spatial proximity 0.1893*** 0.001 0.001 0.999

Extent of openness to the outside 
world 0.082 0.125 0.125 0.876

Industrial structure 0.1497** 0.028 0.028 0.972

Urbanization level (of a city or town) 0.0890* 0.089 0.089 0.912

Technological level 0.1245** 0.016 0.016 0.984

Energy utilization 0.1321** 0.023 0.023 0.977

 Note: *, **, and *** denote significance at the 10%, 5%, and 1% levels of significance, respectively.

Table 9. Results of influencing elements of the spatial network structure of innovative green efficiency in the logistics industry.
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