
(BMI)1 is a major risk factor for noncommunicable 
diseases (NCDs) such as cardiovascular disease, 
diabetes, musculoskeletal disorders, and certain cancers 
such as ovarian, liver, kidney, and colon cancer [2]. 
The risk of these NCDs increases with increasing BMI 
and contributes to higher social medical costs. Obesity 
and overweight are caused by an energy imbalance 
between calories consumed and calories expended. 
Energy imbalances are frequently linked to dietary  

1 BMI is a basic index of weight-for-height that is commonly 
used to classify overweight and obesity in adults. It is calcu-
lated as an individual’s weight in kilograms divided by the 
square of their height in meters (kg/m2).

Introduction

Obesity has reached epidemic proportions 
worldwide, with at least 2.8 million people dying  
as a result of being overweight or obese each year. 
Obesity was once associated with high-income 
countries, but it is now prevalent in low and middle-
income countries as well [1]. Increased body mass index 
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Abstract

In this paper, we examine whether outdoor air pollution has a causal effect on body weight.  
To address the potential endogeneity, we exploit exogenous variation in PM2.5 concentrations generated 
by China’s coal-fired winter heating policy, using regression discontinuity designs to estimate the impact 
of winter heating on air pollution and body weight in adults. We find that high outdoor air pollution 
exposure increases body mass index and the corresponding risk of obesity with a 1 μg/m3 increase  
in annual average PM2.5 concentrations in the past ten years increasing body mass index by 0.014 units 
and increasing the rate of adult obesity, by 0.3 percentage points. Our results are robust to using different 
specifications. Furthermore, the rising risk of obesity caused by air pollution is mainly through channels 
such as increased intake of energy-dense foods and less physical exercise. The findings imply that low 
pollution exposure can be an effective way to improve dietary and physical activity patterns and reduce 
the risk of becoming overweight.

Keywords: air pollution, body weight, overweight and obesity, winter heating policy, regression 
discontinuity design



Sheng Xu, et al.2908

and physical activity habits, such as excessive energy-
dense foods and a lack of physical activity [2]. In turn, 
dietary and physical activity habits are frequently 
the result of developmental, environmental, and 
social changes. Thus, in addition to factors related to 
social development such as job loss, macroeconomic 
conditions, and peer effects [3, 4], air pollution is a factor 
that cannot be overlooked in impacting overweight and 
obesity. Many studies have focused on the impact of 
air pollution on physical and mental health [5-7], but 
insufficient attention has been paid to the impact of body 
weight.

Several studies have empirically examined the 
association between environmental pollution and body 
mass and found a significant positive effect between 
them [8, 9], but few studies have examined the causal 
effect between them. This study uses quasi-experiments 
derived from China’s coal-fired winter heating policy 
to investigate the causal effect of air pollution on adult 
body weight from a novel perspective. The empirical 
challenge associated with studying the causal effect of air 
pollution on obesity risk is that exogenous variation in air 
pollution is hard to come by. In its absence, estimates are 
vulnerable to confounding by the unmeasured combined 
factors of obesity and air pollution. For example, air 
pollution is a byproduct of economic activity and may 
be associated with other factors that are also important 
determinants of obesity, i.e., many factors can affect 
both air pollution and obesity. These factors include the 
level of economic development, food prices, and social 
and cultural practices at the regional level and at the 
individual level, mainly in terms of income, and some 
factors that are easily omitted due to self-selection bias, 
such as people tending to choose to wear masks, buy air 
purifiers, and even migrate in response to air pollution. 
The existence of the above problem suggests that a large 
number of potential factors will inevitably be omitted 
for reasons that cannot be observed or measured, and 
thus air pollution is endogeneity. This implies that an 
OLS regression of air pollution on body weight yields  
a biased estimation coefficient.

To identify the causal effect, we exploit a regression 
discontinuity (RD) design based on China’s winter 
heating policy to estimate the impact of air pollution 
on adult BMI and overweight and obesity as defined 
by BMI. China’s winter heating policy only applies 
centralized winter heating to cities north of the Huai 
River/Qinling Mountains line, while southern cities 
do not. Thus, this design uses exogenous shocks from 
China’s winter heating policy to compare pollutant 
differences and body weight differences north and 
south of the line. In this case, some of the factors that 
influence body weight in adults, such as economic level, 
education level, and resource disparity, are controlled 
because the line is only a geographical border and 
not an economic one. Accordingly, the difference in 
average BMI between the north and south of the line 
can be considered a causal effect of air pollution on body 
weight.

As the effects of air pollution on health, especially 
overweight and obesity, are usually through behavioral 
channels, they may respond slowly (1 year or even years) 
to air pollution exposure. Thus, estimating the causal 
effect of long-term air pollution on body weight is more 
likely to yield useful results, although the empirical 
challenges faced are similar to those for estimating the 
short-run effects of air pollution. Our main contribution 
to the literature is to estimate the causal effect  
of long-run exposure to air pollution on obesity in 
China. We build upon previous work that estimates the 
effect of air pollution on health. Although the recent 
literature has paid more attention to environmental 
factors of body weight [10, 11], most of these studies 
focus on short-run effects. We extend the work of 
Deschenes et al. (2020) [11] to encompass the long-run 
effect of air pollution on adult body weight. Another 
innovation in our study is the exploration of another 
determinant such as body weight. Numerous attempts 
have been made to determine the causes of body weight 
[12]. Possible causes include urbanization [13], income 
[14, 15], education [16], internet access [17], and peer 
and neighborhood effects [4, 18]. This study adds  
to the growing body of literature by focusing on 
determinants that have received little attention, namely 
air pollution.

We find compelling evidence for a causal effect of 
air pollution on body weight. More specifically, we 
find that a 1 μg/m3 increase in annual average PM2.5 
concentrations in the past ten years has increased BMI 
by 0.014 units and the rate of adult overweight by  
0.3 percentage points. We find that the positive effect 
was mainly driven by differences in dietary and physical 
activity patterns due to air pollution, which led to 
different risks of overweight in adults facing different 
outdoor exposures. Our results are robust to placebo 
regressions and different specifications, including 
different estimation methods, bandwidth, weighting, and 
sample selection.

The remainder of the paper is as follows: Section 
2 is a background section that describes the literature 
on pollution and body weight as well as China’s winter 
heating policy. Section 3 introduces the empirical 
strategy as well as the data. Section 4 presents the 
results. Section 5 discusses the costs and benefits and 
research caveats. Section 6 offers conclusions and the 
significance of our findings.

Literature Review and Empirical Background

Literature Review

A wide range of literature shows that there is  
a significant positive correlation between environmental 
pollution exposure and obesity. McConnell et al. (2015) 
[8] investigated the combined effects of air pollution 
and tobacco smoke exposure on BMI and obesity rates 
in Southern California children. It was discovered that 
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exposure to road pollution in residential areas was 
positively related to secondhand smoke exposure and 
childhood obesity. Ponticiello et al. (2015) [19] explored 
whether outdoor workers exposed to urban pollution in 
Italy were more likely to be overweight or obese than 
indoor workers. Estimates show that outdoor workers 
exposed to urban air pollution may be more likely to 
be obese. Kim et al. (2018) [20] further investigated 
the effect of air pollution on BMI in children exposed 
to air pollution from roads before and after birth.  
The results found that the effect of near-road air  
pollution on children’s BMI was mainly in children 
exposed to pollution during gestation, with no significant 
effect of postnatal exposure on children’s BMI  
at age 10 years; prenatal exposure to road pollution 
increased the rate of change in children’s BMI, 
resulting in a higher BMI at age 10 years; and early 
exposure to high levels of pollution increased the risk 
of childhood obesity. Zhang et al. (2020) [21] assessed 
the relationship between traffic-related air pollution 
and obesity in Mexican American adults and found 
that for every 685.1-meter increase in the distance from 
a major highway, women’s BMI decreased by 0.58. 
Tamayo-Ortiz et al. (2021) [9] analyzed the effects of air 
pollution on obesity in children, adolescents, and adults 
in the greater Mexico City area. The results found that 
airborne PM2.5 concentrations significantly increased 
the prevalence of obesity. Although the above studies 
provide considerable evidence for the prevalence of 
environmental pollution and body weight, there is not 
enough causal evidence for the effect of air pollution on 
body weight. This is because there may be endogeneity 
problems between them brought about by omitted 
variable bias.

How to eliminate endogeneity is the key to 
determining the causal effect between air pollution 
and body weight. Some scholars also began to explore 
this issue. Currie et al. (2013) [22] examined the effect 
of water pollution on fetal weight using whether or not 
the pregnancy was full-term as an instrumental variable 
for the intensity of water pollution exposure and found 
that mothers living in areas with water pollution during 
pregnancy gave birth to babies with 14.55% lower 
body weight than in normal areas. Yang and Chou 
(2015) [23] used exogenous wind direction to study the 
effect of prenatal exposure to a unique large source of 
pollution (a coal power plant located near the border of 
two U.S. states) on birth weight in a downwind state 
and found that sulfur dioxide pollution reduced birth 
weight. Altindag et al. (2017) [10] employed naturally 
occurring dust storms as an experiment to overcome 
the endogeneity problem and examined the effect of 
air pollution caused by dust storms on the birth weight 
of Korean infants, and the study similarly found  
a significant negative effect of exposure to air pollution 
on birth weight. Deschenes et al. (2020) [11] used 
thermal inversions as an instrumental variable to study 
the short-run causal effect of air pollution on adult body 
weight. 

To sum up, the current literature examining  
the effects of air pollution on body weight is relatively 
limited in its efforts to address the endogeneity 
of air pollution. We enrich the previous literature 
by addressing this issue from another perspective.  
In particular, we use the RD design based on China’s 
coal-fired winter heating policy for the first time  
to estimate the effects of air pollution on body weight. 
Different from instrumenting air pollution using  
thermal inversions to tackle endogeneity, our research 
design exploits exogenous characteristics of the policy 
to elicit causal effects. Additionally, we extend the work 
of Deschenes et al. (2020) [11] to encompass the long-
run effects of air pollution on adult body weight.

China’s Winter Heating Policy

China’s winter heating policy refers to the 
government’s centralized winter heating for cities north 
of the Huai River/Qinling Mountains line, China’s 
north-south border. The government bases central 
heating on this line for three reasons. First, because the 
average temperature in January is around zero degrees 
Celsius, northern cities have a greater requirement for 
heating. Second, because this line is not used for other 
administrative purposes, it can help to reduce policy 
discrimination [24, 25]. Third, the government only 
provides central heating for northern cities, reducing 
energy consumption and financial expenditure [26, 27]. 
Every winter since 1958, cities north of the border have 
received government-funded central heating. In contrast, 
the state provides no central heating in southern China. 
Coal is used in most northern centralized heating 
systems. Particulate matter and other air pollutants 
are released when coal is burned incompletely to 
generate heat. Pollution from coal heating is primarily 
local because most of the heat comes from boilers in 
residential buildings. Therefore, residents in southern 
and northern China experience significantly different 
annual exposures to outdoor air pollution due to heating 
in the winter. Multiple studies have found that China’s 
central heating policy has resulted in significantly higher 
outdoor average total suspended particulate matter 
levels and PM2.5 concentrations in the north than in the 
south [26, 28, 29]. Fig. 1. shows the Huai River/Qinling 
Mountains line of China’s winter heating policy and the 
PM2.5 concentration in prefecture-level cities along the 
line in 2010. Intuitively, there are obvious differences in 
PM2.5 concentrations between the north and south of the 
Huai River line.

In this study, we use the exogenous changes in air 
pollution caused by China’s winter heating policy to 
estimate the impact of outdoor exposure to air pollution 
on adult body weight.
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Econometric Model and Data

Empirical Strategy

The goal of our empirical estimation is to capture 
the causal effect of long-term air pollution on adult 
body weight. There are two important challenges to 
doing this. The first one is omitted-variable bias. Air 
pollution and economic activity are highly correlated. 
Urban residents with high economic activity have higher 
incomes. It has been documented that exogenous family 
income subsidies can significantly increase the weight 
level of children and increase the risk of overweight 
and obesity [14]. Thus, it is likely the case that those 
cities with high-paid jobs and per capita income are 
also those that experience high levels of air pollution. 
In fact, as the confounding factors related to economic 
activities cannot be fully observed, air pollution and 
body weight may show a correlation over time. Ignoring 
the regression results of confounding factors should not 
be interpreted as the impact of air pollution on body 
weight, because time-varying confounding factors such 
as economic activity could be driving the correlation. 
Second, despite the fact that air pollution is not likely 
to have an effect on body weight directly, it may have 
an indirect effect on body weight through several 
behavioral pathways, which means that overweight and 
obesity may be the result of the long-run accumulation 
of air pollution. However, some literature has only 
provided short-run changes in air pollution and body 
weight [10, 21]. Therefore, we expect that overweight and 

obesity outcomes in individuals should be a response 
to behavioral habits shaped by observable long-run 
changes in air pollution. The interaction of these two 
challenges creates a considerable identification challenge 
since it is challenging to identify sources of long-run 
fluctuation in air pollution that are unrelated to other 
sociodemographic or economic trends. Our strategy for 
overcoming this challenge is to build a 10-year annual 
average exogenous variation at the county level between 
2001 and 2010 in pollution caused by the winter heating 
policy, which offers coal-fired centralized indoor heating 
to the north of the Huai River/Qinling Mountains 
line but none to the south. Specifically, we use an RD 
design implicit in the winter heating policy to measure 
its impact on air pollution and adult body weight2. We 
examine separately whether the winter heating policy 
led to discontinuous changes in air pollution and adult 
body weight north of the river line. Any unobserved 
drivers of air pollution or adult body weight must change 
smoothly as they cross the river, which is the respective 
required assumption. Local linear regressions on either 
side of the river, or adjustment for a sufficiently flexible 
polynomial in distance from the river line, can eliminate 
all potential omitted-variable bias and enable causal 
inference if the relevant assumption is true. 

2 RD designs based on China’s winter heating policy 
have been used to eliminate endogeneity air pollution 
in Ebenstein, et al.(2017) [28], Chu, et al.(2018) [30], 
Ito and Zhang(2019) [24], and Fan, et al.(2020) [25].

Fig. 1. Huai River boundary and PM2.5 concentration in prefecture-level cities in 2010. 
Note: The line in the middle of the map shows the Huai River-Qinling boundary.
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meters (kg/m2). We determined overweight and obesity 
in adults based on the Chinese reference4, which defines 
an adult as overweight if their BMI is greater than or 
equal to 24, and obese if their BMI is greater than or 
equal to 28. Since a child’s weight status is determined 
using age- and sex-specific percentiles for BMI, referred 
to as BMI-for-age, rather than the BMI threshold used 
for adults, our sample exclusively comprises adults 
(those above the age of 18). 

Given that the dependent variables in this paper 
were calculated from both weight and height, we 
obtained individual self-reported height and weight data 
from the China Family Panel Studies (CFPS), a large-
scale national social tracking survey. CFPS tracks and 
collects data at the individual, family, and community 
levels to reflect changes in China’s society, economy, 
population, education, and health. The CFPS 2010 
wave, which serves as a baseline survey and interviews 
14960 households and 42590 persons from 162 counties/
districts in 25 provinces, covers 95% of the population 
in China. Using implicit stratification, multi-stage 
(county/district, village/community, and household), 
multi-level, probability sampling in proportion to 
population size, the Social Science Research Institute at 
Peking University conducts the CFPS. Our data on the 
key independent variable, i.e., the running variable, is 
obtained in two steps. We initially utilized ArcGIS to 
extract the longitude and latitude of the 162 counties 
surveyed from the CFPS map of China. We then use 
ArcGIS specifically to calculate the shortest distance 
between the county centroids and the closest location 
along the Huai River border.

We use PM2.5 to measure air pollution because 
Wang et al. (2014) [33] showed that high ambient 
PM2.5 concentrations are thought to be closely related 
to China’s enormous primary energy consumption, 
especially coal consumption. Our PM2.5 data comes 
from satellite-based Aerosol Optical Depth (AOD) 
retrievals to reduce subjectivity errors. Consistent with 
other literature [34], we obtain the AOD data from the 
Atmospheric Composition Analysis Group of Dalhousie 
University through the sensor and process it with 
ArcGIS software. To estimate the effects of long-run air 
pollution exposure, we aggregate from grid to county 
for each year and further average the 10-year exposure 
window between 2001 and 2010.

Weather controls are among our covariates. We 
obtained weather data from the China Meteorological 
Science Data Sharing Service Website’s Daily Data 
Set of China’s Surface Climate Data, which publishes 
daily weather variables from over 800 meteorological 
stations in China. To convert weather data from stations 
to counties, we use the inverse distance weighting 

4 The World Health Organization (WHO) reference defines an 
adult as overweight if their BMI is greater than or equal to 
25, and obese if their BMI is greater than or equal to 30.  
We consider the estimation results of replacing the WHO 
reference in the robustness test.

The recent literature suggests that a local linear 
regression based on data near the RD cutoff is likely 
to produce the most robust estimates [31, 32], and the 
parametric RD approach is found to have several 
undesirable statistical properties [32]. Therefore, we 
use local linear regression as the main specification 
and emphasize our results from the non-parametric 
regression method. We also present outcomes for the 
RD approach using parametric estimation in robustness 
checks. In practice, we propose the following setup for 
estimation by local linear regression:

 
(1)

  
(2)

Where Yic denotes the body mass measures, including 
BMI, and indicators for overweight and obesity for 
individual i residing in county c. Pic refers to the average 
outdoor exposure annual average concentration of PM2.5 
sustained by individual i residing in county c. Note that 
overweight and obesity may be the result of long-term 
exposure air pollution, and in this study, we specified 
a 10-year period for exposure to air pollution to affect 
body weight. Nic is the dummy variable for the north, dic, 
the running variable, is the distance between individual 
i residing in county c and the Huai River border. εic and 
uic are the error term. Temperature, relative humidity, 
cumulative precipitation, and sunshine duration are all 
covariates Xic. Zic is a vector of observed factors that may 
have an impact on health, which includes not just Xic, but 
also demographic and health behavior characteristics.

To solve the attenuation bias associated with the 
mismeasurement of air pollution, we estimate the 
effect of PM2.5 on adult body weight using a fuzzy RD 
framework with a second-stage regression3 specified by 
equation (3):

(3)

by using Nic as the instrument for Pic. The identification 
presumption is that there is no correlation between 
the instrument and the error term σic. The parameter 
of interest is φ1, which measures the effect of PM2.5 
exposure on BMI, overweight, and obesity of adults 
after controlling for available controls. The other 
variables are as described above.

Data

We calculate BMI as an individual’s weight in 
kilograms divided by the square of their height in 

3 Equation (1) is the first stage in a two-stage least 
squares system of equations.
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method and a radius of 200 km. Temperature, relative 
humidity, total precipitation, and sunshine duration are 
all included in the weather data. This dataset has been 
used in previous studies [35, 36]. We calculated the 
annual average of the weather data from 2001 to 2010 
to match the air pollution data. Other covariates such as 
age, gender, minority, urban/rural status, income, and 
health behavior variables such as whether the respondent 
smokes and drinks regularly are obtained from the wave 
of 2010 in CFPS.

We matched the average processed pollution data and 
weather data to the wave of 2010 in the CFPS baseline 
survey to meet the requirements of the Huai River RD 
design for cross-sectional characteristics. Our final 
sample has 32511 adult individuals from 162 counties/
districts across 25 provinces.

Results

Descriptive Statistics and Transparent 
Graphics of RD Design

Table 1. reports summary statistics for key variables. 
We aim to estimate the effect of air pollution on body 
weight. We use three indicators to measure body weight: 
BMI and the indicators for overweight and obesity. We 
divided the sample into two groups south and north 
of the Huai River line for summary statistics. In our 
sample, the mean BMI in the north was 22.59 in 2010, 
with a standard deviation of 3.44, while in the south it 
was 21.88, with a standard deviation of 3.25, both close 
to the cutoff of 24 for overweight. Correspondingly, the 
mean overweight and obesity rates in the north were 
31% and 7%, respectively, compared to 24% and 4%  
in the south. Since BMI is calculated from body height 
and weight, we also report the average height and 
weight. The average weight in the north was 61.63 kg, 
and the average height was 1.65 m. The average weight 
in the south was 57.83 kg, and the average height was 
1.62 m. In terms of body height, the south and the north 

are very close, which provides us with the opportunity 
to exclude some confounding factors since our sample 
only includes adults whose height does not respond to 
pollution exposure and also suggests that the difference 
in BMI between the south and the north is mainly 
dominated by body weight.

We used PM2.5 concentrations to measure air 
pollution. The average PM2.5 concentration was 49.41 in 
the north and 43.85 in the south, both of which exceeded 
the cutoffs given by the WHO for concentrations that 
could be potentially hazardous to health.

Table 2. reports summary statistics for control 
variables. Weather controls are at the county level, with 
demographic and health behavior characteristics serving 
as individual-level controls. We construct individual-
level control variables from CFPS. Survey respondents 
were asked to self-report their age, gender, minority, 
urban/rural status, income, and whether they smoked 
and drank regularly. These control variables are useful 
for two reasons. First, individual-level controls are 
important confounders in estimating the long-run health 
effects of air pollution. Second, weather controls can 
affect both air pollution and body weight. In addition 
to dividing the sample into two groups south and north 
of the Huai River line for summary statistics, Table 2. 
extends Table 1. by comparing the differences between 
the two groups. Column (3) reports the mean differences 
between north and south and the associated standard 
errors. It is worth noting that the statistic shows a simple 
difference, not necessarily a discontinuous difference at 
the border. 

These control variables are observable determinants. 
The RD design’s identifying assumption is that 
observable determinants change smoothly at the 
boundary. Column (4) shows RD estimates for weather 
and individual-level observable covariates. Each RD 
estimate uses local linear regression. Each variable’s 
optimal bandwidth is chosen separately using two 
different mean square error (MSE) optimal bandwidth 
selectors proposed by Calonico et al. (2014) [37], 
Calonico et al. (2018) [38], and Calonico et al. (2019) 

Table 1. Summary statistics of key variables.

North South

Variable Unit/ Definition N Mean SD N Mean SD

BMI kg/m2 17633 22.591 3.438 14878 21.881 3.247

Overweight BMI ≥ 24 17633 0.314 0.464 14878 0.237 0.425

Obesity BMI ≥ 28 17633 0.065 0.247 14878 0.040 0.197

Weight kg 17633 61.631 11.143 14878 57.833 10.630

Height m 17633 1.650 0.078 14878 1.623 0.081

PM2.5 μg/m3 83 49.408 20.395 79 43.848 15.008

Note: The CFPS baseline survey sampled 83 northern and 79 southern counties in China. The pollution variable is at the county 
level, and the body weight variable is at the individual level. Each individual’s BMI measurement uses their weight in kilograms 
divided by the square of their height in meters (kg/m2). Overweight is a dummy variable equaling 1 if the BMI is greater than 24. 
Obesity is a dummy variable equal to 1 if the BMI is greater than 28.
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[39] with a triangle kernel. We cannot detect major 
changes in these variables, suggesting that observable 
determinants change smoothly at the boundary.

The RD method allows for a transparent graphical 
representation of the effect of interest. Before discussing 
the estimation results, we visualize the patterns of air 
pollution and body weight in the data. We separately 
plotted the variation of PM2.5, BMI, overweight, and 
obesity rates across the Huai River line in Fig. 2. The 
X-axis indicates the north-south distance from the 
county to the Huai River line. We plot the quadratic 
polynomial fit, along with the 95% confidence interval, 
against distances around the boundary. It is apparent 
that there is a discontinuity of PM2.5 concentration, 
BMI, and overweight rate increases at the boundary, 
suggesting that the winter heating policy has caused 
higher pollution levels, average BMI, and overweight 
risk in the northern counties of the Huai River boundary.

Main Results

Table 3. presents the estimated discontinuities of the 
PM2.5 average concentrations and body weight across the 
boundary by running equations (1)-(3). All estimations 
use the triangle kernel and report the conventional 
RD estimates with traditional standard errors. Panel 
A presents the first-stage estimation results for PM2.5. 
Panels B and C report the results of reduced form and 
fuzzy RD estimation, where the dependent variable is 
body weight measure, respectively. In Column (1), we do 
not add any controls, and weather controls are included 
in Column (2). In Column (3), we further add detailed 
individual-level demographic and health behavior 
characteristics. There are no observable confounders at 
the individual level in Panel A since they are significant 
confounding factors that may affect health rather 

Table 2. Summary statistics of control variables.

Variable North South Differences in means RD estimates

(1) (2) (3) (4)

Temperature (ºC) 11.556 18.665 -7.109*** -0.009

(3.464) (2.777) [0.492] [0.351]

Relative humidity (%) 61.445 73.776 -12.231*** 0.502

(5.938) (4.371) [0.817] [2.289]

Precipitation (mm) 594.492 1361.781 -767.289*** 17.763

(200.975) (356.605) [45.782] [80.846]

Sunshine duration (h) 2252.392 1587.615 664.778*** -2.056

(296.874) (338.405) [50.113] [217.190]

Age 45.164 45.930 -0.765*** -1.203

(16.145) (16.700) [0.180] [0.738]

Gender 0.481 0.489 -0.008 0.003

(0.500) (0.500) [0.005] [0.020]

Minority 0.952 0.872 0.080*** -0.009

(0.214) (0.334) [0.003] [0.008]

Urban/Rural status 0.413 0.525 -0.112*** -0.014

(0.492) (0.499) [0.005] [0.030]

Income (10000 yuan) 0.777 1.184 -0.407*** -0.069

(1.551) (2.372) [0.022] [0.072]

Smoking regularly 0.309 0.287 0.022*** 0.005

(0.462) (0.452) [0.005] [0.023]

Drinking regularly 0.048 0.044 0.004* -0.002

(0.214) (0.205) [0.002] [0.011]

Note: Columns (1) and (2) report the mean values of the boundary’s north-south samples, while Column (3) reports the raw 
differences between the means of the two samples using the t-test. The nonparametric RD estimation results are shown in Column 
(4). Standard deviations are reported in parentheses in Columns (1) and (2). Standard errors are reported in brackets in Columns (3) 
and (4). * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% level.
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than air pollution5. The optimal bandwidth uses two 
different MSE-optimal bandwidth selectors proposed by 
Calonico et al. (2014) [37], Calonico et al. (2018) [38], 
and Calonico et al. (2019) [39]. We prefer the estimates 
from the most comprehensive specification (Column (2) 
for Panel A, Column (3) for Panels B and C).

In Panel A, we find a strong first-stage relationship. 
The estimated coefficients are stable across the 
specifications and statistically significant at the 5% level. 
Column (2), our preferred specification, suggests that the 
winter heating policy has increased PM2.5 concentrations 
in the past 10 years by 20 μg/m3; this translates into  
a 45% increase at the Huai River boundary (the mean 
PM2.5 concentrations in the same period south of the 
Huai River border are 44 μg/m3).

Panel B estimates the impact of the winter heating 
policy on body weight measurement and finds that  
the winter heating policy increases BMI by 0.315 
units and the probability of being overweight by 6%.  
There is a statistically significant discontinuous increase 
in the risk of being overweight at the boundary, but not 
in the risk of being obese. Adults living north of the 
Huai River line have a substantially higher risk of being 
overweight than those living south. These results echo 
the graphical analyses that the winter heating policy 
can cause a significant deterioration in the air quality 

5 Note that Panel A regresses at the county level, while 
Panels B and C regress at the individual level.

in northern Chinese cities and increase the risk of being 
overweight.

Given that many counties have good air quality 
because of environmental regulations, despite being 
located north of the Huai River border. Therefore, the 
reduced form estimate (Panel B) overvalues the effect 
of the winter heating policy. Panel C reports the fuzzy 
RD estimates of the impact of air pollution on various 
indicators of body weight. We prefer the result in Column 
(3), where both weather conditions and demographic and 
health behavior covariates are controlled. Column (3) of 
Panel C shows that a 1 μg/m3 increase in average PM2.5 
concentrations in the past 10 years has increased BMI by 
0.014 units and the probability of being overweight by 
0.3 percentage points. We find a statistically significant 
effect of PM2.5 on the risk of being overweight, but not on 
the risk of being obese. These findings are remarkably 
stable and are not affected by the inclusion of different 
controls.

Two features are noteworthy when comparing the 
results of Deschenes et al. (2020) [11], who studied the 
effect of air pollution on body weight using thermal 
inversion as an instrumental variable for air pollution. 
First, we found that the results of air pollution on 
BMI and overweight rates were similar in sign and 
magnitude to those of Deschenes et al. (2020) [11]. 
Second, we did not find a statistically significant effect 
of air pollution on the probability of adult obesity, but 
the results estimated by Deschenes et al. (2020) [11]. 
were statistically significant. The important reason  

Fig. 2. Distribution of pollution exposure and body weight at the Huai River line. 
Note: The graphs show the average value north and south of the Huai River line. The horizontal axis is the distance north (positive values) 
and south (negative values) from the sample location to the Huai River line. The scatterplot is the means within 100 km bins, and the solid 
and dashed lines are the regression fit and associated 95% confidence intervals, respectively.
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is that Deschenes et al. (2020) [11]. estimate a global 
effect, while our RD design estimates a local effect. 
In our local estimates, many geographic samples will 
be excluded, and overweight and obesity are likely to 
have significant geographic characteristics. Despite the 
differences, we fail to observe contradictions with the 
main findings of Deschenes et al. (2020) [11].

For comparison, Column (4) also presents the 
traditional OLS estimates that do not include a running 
variable. We discover that the magnitude of the RD 
estimates is smaller than the OLS estimates. There 
are two possibilities for such a difference. First, OLS 
results are biased upward possibly, due to omitted 
variable bias. The second explanation is an outdoor air 
pollution exposure measurement error. We do not know 

the specific exposure of each individual because we are 
using area-level outdoor air pollution. Many studies on 
the effects of air pollution in the literature have noted 
that assigning air pollution exposure to individuals from 
the area level (in our study, the county level) introduces 
classical measurement error [40-43]. The possible 
reasons that outdoor air pollution exposure increases the 
risk of obesity are as follows: First, air pollution affects 
people’s dietary behavior. For example, air pollution 
may trigger depression and anxiety, which increase 
the appetite for food and lead to excessive food intake. 
Second, air pollution affects people’s exercise behavior. 
Air pollution causes people to stay indoors and reduce 
the amount of outdoor exercise. Changes in diet and 
exercise behavior increase the risk of obesity by creating 

Table 3. RD and OLS estimation results.

RD RD RD OLS

(1) (2) (3) (4)

Panel A: Air pollution

PM2.5 19.413** 20.168** 27.149***

(9.736) (8.229) (4.157)

Weather controls No Yes Yes

Observations 162 162 162

Panel B: Body weight measure (reduced form)

BMI 0.364** 0.252* 0.315** 0.725***

(0.180) (0.148) (0.141) (0.068)

Overweight 0.064** 0.055*** 0.061*** 0.100***

(0.025) (0.021) (0.019) (0.009)

Obesity -0.004 -0.005 -0.003 0.027***

(0.011) (0.011) (0.010) (0.005)

Panel C: Body weight measure (fuzzy RD)

BMI 0.016** 0.012* 0.014** 0.019***

(0.008) (0.007) (0.006) (0.001)

Overweight 0.003** 0.003*** 0.003*** 0.002***

(0.001) (0.001) (0.001) (0.0001)

Obesity -0.0001 -0.0001 -0.0001 0.001***

(0.0001) (0.0001) (0.0001) (0.0001)

Weather controls No Yes Yes Yes

Individual controls No No Yes Yes

Observations 32511 32511 32511 32511

Note: Columns (1)-(3) are the nonparametric estimated discontinuity at the Huai River obtained using local linear regression and 
two different MSE-optimal bandwidth selectors with a triangle kernel. Each RD estimate reports conventional results and has an 
asymmetric optimal bandwidth on both sides of the threshold. Column (4) presents the OLS regression, in which running variables 
are not included in the regression equation. Weather controls include temperature, relative humidity, precipitation, and sunshine 
duration. Individual controls include age, gender, minority, urban/rural status, income, smoking regularly, and drinking regularly. 
Standard errors are reported in parentheses. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% 
level.
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an energy imbalance between calories consumed and 
calories expended.

Robustness Checks

In this section, we examine the qualitative effects 
of the choices we made in our study along a variety of 
dimensions on our primary findings. 

We first experiment with a parametric method 
to examine the sensitivity of our results. Since the 
consistency of parametric estimation requires controlling 
a flexible polynomial, we also check the robustness of 
our parametric results for higher-order polynomials.  
The implementation of local linear regression for 
parametric estimation requires manual bandwidth 
limitations. We refer to Ebenstein et al. (2017) [28] to 
manually limit the bandwidth within 500 kilometers 
from the north to the south of the Huai River line. Table 
4. has the results using the parametric method when 
the order of the polynomial varies between linear and 
sextic. Panels A and B present the reduced form and 
fuzzy RD parametric estimation results, respectively. 
The RD-estimated effects on BMI and overweight are 
always significantly positive. Our results are robust to 
the choice of functional forms for the RD polynomial. 

Overall, our parametric and nonparametric estimates 
are qualitatively similar to those in our primary analysis 
and suggest that our major findings in this study do 
not depend on parametric or nonparametric estimation 
methods.

Second, we probe the sensitivity of the results to 
different bandwidth selection and kernel weighting 
methods. Table 5. shows the non-parametric results.  
All regressions use an asymmetric bandwidth. We 
replicated Column (3) of Table 3., our preferred 
specification, as the baseline regression results and 
placed them in Column (1). In our preferred specification, 
we use triangle kernel local linear regressions and the 
bandwidth selected by the MSE-optimal bandwidth 
selector. To check the robustness of the results to 
different kernel functions, we report the estimation 
results to different kernel types (Epanechnikov and 
Uniform) in Columns (2) and (3). To verify the sensitivity 
of our results to different bandwidths, in Columns (4)-
(6), we replace the optimal bandwidth selection method 
and execute the kernel weighting method in a sequence 
consistent with Columns (1)-(3). We estimate the effect 
of winter heating policies on body weight using the 
coverage error rate (CER) optimal bandwidth method 
proposed by Calonico et al. (2018) [38], Calonico et al. 

Table 4. Robustness test for parametric estimates.

Linear Quadratic Cubic Quartic Quintic Sextic

(1) (2) (3) (4) (5) (6)

Panel A: Reduced form

BMI 0.379*** 0.391*** 0.575*** 0.546** 0.475* 0.839***

(0.108) (0.108) (0.205) (0.242) (0.283) (0.319)

Overweight 0.079*** 0.080*** 0.086*** 0.083** 0.078** 0.133***

(0.015) (0.015) (0.029) (0.034) (0.039) (0.045)

Obesity 0.009 0.010 0.001 0.000 -0.014 -0.006

(0.008) (0.008) (0.015) (0.017) (0.020) (0.022)

Panel B: Fuzzy RD

BMI 0.016*** 0.017*** 0.025*** 0.032** 0.015* 0.023***

(0.005) (0.005) (0.009) (0.014) (0.009) (0.009)

Overweight 0.003*** 0.003*** 0.004*** 0.005** 0.003** 0.004***

(0.001) (0.001) (0.001) (0.002) (0.001) (0.001)

Obesity 0.0001 0.0001 0.0001 0.0001 -0.0001 -0.0001

(0.0001) (0.0001) (0.001) (0.001) (0.001) (0.001)

Weather controls Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes

Observations 18292 18292 18292 18292 18292 18292

Note: This table shows the parametric RD estimation results of polynomials of different orders. The optimal bandwidth is manually 
limited to 500 kilometers from the north to the south of the Huai River line. All regressions include weather and individual controls. 
Standard errors are reported in parentheses. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% 
level.
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(2020) [44], and Calonico et al. (2022) [45]. In general, 
we find that the results are similar in sign and magnitude 
to those in Table 3., suggesting that our results are robust 
to these alternative bandwidth selection and kernel 
weighting methods.

Third, to exclude the possibility that our estimates 
are likely to be systematic artifacts caused by spurious 
factors around the Huai River line, we implement 
a set of repeated placebo exercises with randomly 
varying latitudinal boundaries in the sample. Each 
placebo estimate computes a “false” running variable 
as the distance from the sample location to the placebo 
boundary and estimates the discontinuity in the body 
weight at the placebo boundary. We use a triangle kernel 
local linear regression and the bandwidth selected by 
two different MSE-optimal bandwidth selectors to 
estimate the effect of the boundary on body weight. Fig. 
3. compares such estimates with a distribution of 500 
placebos. The distributions of the placebos are centered 
at 0, and the probability of obtaining values below the 
estimates at the true boundary for BMI and overweight 
is both less than 0.05. Under the null hypothesis of no 
effect of China’s winter heating policy, the estimating 

bias is sufficiently large to account for the magnitude 
of the estimated coefficient. These results seem to rule 
out the possibility that our main results are systematic 
artifacts caused by spurious factors around the Huai 
River boundary.

Finally, we also explore various robustness 
checks for alternative specifications, variables, and 
overweight and obesity reference standards in Table 
6. For nonparametric RD estimates in Table 6., we 
use the triangle kernel local linear regressions and 
the bandwidth selected by two different MSE-optimal 
bandwidth selectors as the preferred specification. We 
first examine the robustness of our results to the WHO 
reference standard, which defines the BMI threshold of 
adult overweight as 25 and obesity as 30. Column (1) 
presents the RD estimates using the alternative standard. 
Although the coefficient was different in magnitude, the 
effect on body weight from this exercise is similar to the 
main results presented in Table 3. Thus, our results are 
robust to this alternative reference. BMI is calculated 
from body weight and body height. We estimated 
the results for body weight and height as dependent 
variables separately. We expect that the effect on height 

Table 5. Robustness test for alternative bandwidth selection and kernel weighting methods.

Bandwidth: MSE-optimal bandwidth Bandwidth: CER-optimal bandwidth

(1) (2) (3) (4) (5) (6)

Panel A: Reduced form

BMI 0.315** 0.301** 0.388** 0.381** 0.385** 0.450**

(0.141) (0.140) (0.176) (0.170) (0.171) (0.212)

Overweight 0.061*** 0.058*** 0.060*** 0.070*** 0.062*** 0.078***

(0.019) (0.019) (0.020) (0.023) (0.024) (0.027)

Obesity -0.003 -0.003 -0.005 -0.001 0.002 -0.005

(0.010) (0.010) (0.010) (0.013) (0.012) (0.013)

Panel B: Fuzzy RD

BMI 0.014** 0.013** 0.013** 0.020** 0.019** 0.022**

(0.006) (0.006) (0.006) (0.009) (0.008) (0.010)

Overweight 0.003*** 0.003*** 0.003*** 0.004*** 0.003*** 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Obesity -0.0001 -0.0001 -0.0001 -0.0001 0.0001 -0.0001

(0.0001) (0.0001) (0.0001) (0.001) (0.001) (0.0001)

Weather controls Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes

Kernel Triangle Epanechnikov Uniform Triangle Epanechnikov Uniform

Observations 32511 32511 32511 32511 32511 32511

Note: Each RD estimate uses local linear regression and asymmetric bandwidth. Each cell in the table represents a separate RD 
estimate and has the optimal bandwidth for both sides of the threshold. All regressions include weather and individual controls. 
Standard errors are reported in parentheses. * significant at the 10% level; ** significant at the 5% level; *** significant at the 1% 
level.
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should be insignificant because our sample includes only 
adults, whose height should not respond to air pollution. 
Columns (2) and (3) present the results of the estimation 
of weight and height, respectively. As expected, we find 
a statistically significant effect on weight and height, but 
the coefficient of height is very small, suggesting that 
the effects of winter heating policies on BMI are mainly 
mediated through body weight.

Migration will confound our study in two ways. On 
the one hand, there may be migration from a county of 
hukou registration (obtained at one’s county of birth) to 
another county to work or to seek cleaner air. If such 
migration occurs, our pollution exposure measurements 
may be subject to error because we assume that pollution 
exposure levels are those observed in their county of 
hukou registration. On the other hand, migration may be 
cross-border, which would pose a potential challenge to 
our RD design if such migration were to be substantial. 
Several studies have shown that actual cross-border 
migration rates are low due to strict immigration 
policies [24, 28]. Therefore, migration may not have a 
significant impact on our estimated results. We consider 
two approaches to exploring the potential impact of 
migration on the results. First, to address the challenge 
of RD identification due to cross-border migration, 
we exclude samples without local hukou registration. 
Second, job-oriented migration usually occurs within 
prefecture-level cities; thus, we collapse the pollution 
data for prefecture-level cities for RD estimation. The 
results are presented in Columns (4) and (5), respectively, 
and fail to contradict the study’s qualitative findings. 
Pregnant women may influence our estimates. Their 
body weight increases significantly during pregnancy, 
so their BMI cannot be defined as overweight or obese 
by conventional standards. Since there are no questions 
about pregnancy in the questionnaire, we further restrict 
the age of the sample to women over 50 years old. 
Column (6) of Table 6. reports similar findings.

Mechanism Tests

The underlying cause of overweight and obesity is 
an energy imbalance between calories consumed and 
calories burned, which is mainly caused by excessive 
food intake and a lack of physical activity. Thus, we 
explore two possible channels through which PM2.5 
could affect body weight. First, air pollution leads to 
higher food intake. The mechanism through which this 
occurs is the following: Air pollution is likely to induce 
depression and anxiety, and anxiety may release the 
hormone cortisol [46], which increases the appetite for 
food, leading to excessive food intake. For concreteness, 
we explore differences in food intake to explain air 
pollution’s effects on body weight. Given that residents 
north of the Huai River boundary have higher levels of 
exposure to pollution, they may have a higher average 
food intake than residents south of the river boundary. 
Specifically, we examined differences in adult red meat 
intake, which is closely related to body weight, across 
the Huai River boundary.

Second, air pollution may also affect weight by 
reducing physical activity. For example, when faced 
with outdoor air pollution, people may choose to stay 
indoors to avoid it, resulting in an increase in physical 
inactivity due to indoor sedentariness. These behaviors 
can lead to an energy imbalance between calories 
consumed and calories expended, which increases the 
risk of fat accumulation and obesity. Exercise lowers the 
risk of obesity, according to prior research [47-49]. We 
investigate differences in physical activity among people 
on each side of the Huai River line under the hypothesis 
that variations in physical activity are related to outdoor 
pollution. We examined information on individuals’ 
dietary patterns and exercise habits as documented in 
the CFPS data to get insight into these issues. Under our 
main specification, we explored the impact of China’s 
winter heating policy on the exercise and food intake of 
adults.

Fig. 3. RD estimates of the effect of the latitude boundary on body weight, placebo estimates. 
Note: The graphs show the distribution of the RD estimates obtained by using a nonparametric method obtained from 500 random 
permutations of the boundary. The vertical red solid lines denote the actual estimates.
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Table 7. presents the reduced form and fuzzy RD 
of the winter heating policy on the dietary intake and 
physical exercise of adults. All estimates use two 
different MSE-optimal bandwidth selectors proposed by 
Calonico et al. (2014) [37], Calonico et al. (2018) [38], and 
Calonico et al. (2019) [39]. Columns (1) and (2) report 
the reduced form and fuzzy RD results, respectively. We 
start with food intake in Panel A. As mentioned earlier, 
we expect air pollution exposure to increase meat intake 
and decrease vegetable intake. We find that the winter 
heating policy had a positive effect on meat intake and a 
negative effect on vegetable intake, indicating that food 
intake is a possible channel for air pollution effects. We 
then examine the effect of the winter heating policy on 
physical exercise. We constructed a physical activity 
frequency variable using CFPS. Respondents were 
surveyed on their self-reported frequency of fitness or 
physical activity participation, ranging from 1 (almost 
daily) to 5 (1 time in a few months). We find that outdoor 
air pollution exposure reduces the frequency of physical 
activity in adults, suggesting that reduced outdoor 

physical activity to avoid air pollution is a possible 
channel for air pollution effects.

Discussion

Being overweight and obese can induce a variety 
of chronic diseases, including hypertension, diabetes, 
coronary heart disease, and stroke, and thus contribute 
significantly to social medical costs. To clarify the 
economic costs of being overweight caused by air 
pollution, we perform a calculation that multiplies the 
health expenditures caused by being overweight using 
an estimated coefficient of interest, φ1, which measures  
that the prevalence of overweight increases by φ1 
for every 1 μg/m3 increase in PM2.5 concentration. 
Because it is often challenging to calculate accurate and  
up-to-date data on health expenditures attributable to 
overweight, we want to emphasize that our calculation 
below should be interpreted as a back-of-the-envelope 
calculation.

Table 6. Robustness test for alternative specifications and variables.

Alternative 
reference standards Body weight Body 

height Hukou Prefecture 
level

Excluding pregnant 
women

(1) (2) (3) (4) (5) (6)

Panel A: Reduced form

BMI 3.167*** 0.034*** 0.347** 0.315** 0.330*

(0.527) (0.003) (0.142) (0.141) (0.185)

Overweight 0.039** 0.064*** 0.061*** 0.058**

(0.016) (0.019) (0.019) (0.026)

Obesity -0.005 -0.003 -0.003 -0.003

(0.007) (0.010) (0.010) (0.013)

Panel B: Fuzzy RD

BMI 0.132*** 0.001*** 0.015** 0.014** 0.015*

(0.022) (0.000) (0.006) (0.006) (0.009)

Overweight 0.002** 0.003*** 0.003*** 0.003**

(0.001) (0.001) (0.001) (0.001)

Obesity -0.0001 -0.0001 -0.0001 -0.0001

(0.0001) (0.0001) (0.0001) (0.0001)

Weather controls Yes Yes Yes Yes Yes Yes

Individual controls Yes Yes Yes Yes Yes Yes

Observations 32511 32511 32511 29870 32511 26287

Note: Each cell in the table represents a separate RD estimate. Each RD estimate uses local linear regression and triangle kernel 
weights. Column (1) reports the estimates using a WHO standard for adults overweight and obese, which defines the BMI threshold 
of adults overweight as 25 and obesity as 30. Columns (2) and (3) report the results of RD estimation for weight and height as 
dependent variables, respectively. Column (4) excludes samples without local hukou registration. Column (5) collapses pollution 
data at the prefecture level, which typically includes 5 to 15 counties. All regressions include weather and individual controls. 
Standard errors are reported in parentheses. *significant at the 10% level; ** significant at the 5% level; *** significant at the 1% 
level.
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Using data from the 2002 wave of the China 
Health and Nutrition Survey and the Third National 
Health Service Survey in 2003, Zhao et al. (2008) 
[50] calculated that the direct economic burden of 
hypertension, diabetes, coronary heart disease, and 
stroke due to overweight/obesity in China in 2003 was 
21.11 billion CNY, accounting for 3.2% and 3.7% of 
the total health and medical costs in China. Therefore, 
the minimum health expenditure related to overweight/
obesity is 21.11 billion CNY. Since we find that a 1 μg/m3 

increase in average PM2.5 concentrations increases 
the prevalence of overweight by 0.3 percentage points 
(Panel C of Table 3.), we can conclude that a reduction of 
1 μg/m3 of PM2.5 concentration will bring 63.33 million 
CNY of health benefits by reducing the medical costs 
related to overweight.

China has been heavily dependent on coal for power 
generation, and in response to air pollution caused by 
coal burning, the Chinese government has in recent 

years launched a program to replace some coal-fired 
power plants with cleaner energy sources such as natural 
gas or wind power. The replacement of coal power plant 
policies was first piloted in Beijing starting in 2014 and 
later expanded to several provinces in northern China. 
In the winter of 2017, Beijing and several surrounding 
cities banned coal heating altogether and were required 
to switch to natural gas. The policy has proven to 
have an immediate impact on reducing air pollution.  
For example, Beijing’s average PM2.5 concentration was 
reduced by 50% in December 2017 compared to air 
pollution levels in 2014.

To shed light on the range and magnitude of the 
costs and benefits of the energy replacement policy, we 
first check the emission inventory from China’s coal 
power plants. Ma et al. (2017) [51] imply that 15.5% of 
North China’s PM2.5 emissions come from coal burning 
in power plants during the winter. Assuming that  
a 15.6% decrease in PM2.5 corresponds to an average 
PM2.5 concentration decrease of 15.6%, this results 
in a 7.7 μg/m3 decrease in PM2.5 concentration for the 
average nationwide level of PM2.5 concentration in our 
data. The application of the study’s estimates suggests 
that the replacement policy will generate 488.04 million 
CNY of benefits because it will save medical costs that 
are overweight-related.

For the cost of replacing coal with natural gas, 
we need to assume some key elements of cost since 
the Chinese government did not provide an estimate 
of the total cost of the policy. The cost of a coal-to-
gas policy should include at least three elements: first, 
infrastructure costs, such as pipeline construction and 
gas stove expenditures, second, higher fuel costs, and 
third, the lifetime of the infrastructure. Fan et al. (2020) 
[25] calculate the total cost of replacing coal with natural 
gas for a planned 20-year operation to be between CNY 
1016 billion and CNY 1108 billion per year.

Comparing the cost estimates to the benefit 
estimates, we see that the costs of replacing coal with 
natural gas outweigh the benefits. However, note 
that the cost estimate led by Fan et al. (2020) [25] is 
based on the total cost of the coal-to-gas policy, while 
our benefit estimate only focuses on the impact of air 
pollution on overweight. If we include other health 
benefits of air quality improvements, including lower 
premature deaths, reduced defensive expenditures, and 
life expectancy maintenance, the health benefits of 
the coal-to-gas policy would greatly exceed the costs. 
In conclusion, although the benefits associated with 
reduced overweight represent a small percentage of 
the total health benefits of air quality improvements, 
we should not ignore the positive effects of air quality 
improvements on overweight. This is because we 
are likely to underestimate the benefits associated 
with being overweight for two reasons. First, being 
overweight not only increases the risk of many chronic 
diseases but also affects labor productivity. Second, the 
overweight and obesity epidemic is growing rapidly. 
WHO reports that the global prevalence of overweight 

Table 7. Potential mechanisms of the winter heating policy on 
body weight.

Reduced form Fuzzy RD

(1) (2)

Panel A: Food intake

Meats/Fishes 0.070*** 0.003***

(0.022) (0.001)

Vegetables -1.036*** -0.058***

(0.238) (0.013)

Puffed/Fried foods -0.117 -0.005

(0.213) (0.009)

Panel B: Physical exercise

Physical activity 
frequency 0.183** 0.013**

(0.084) (0.006)

Weather controls Yes Yes

Individual controls Yes Yes

Bandwidth 
Selection Method Msetwo Msetwo

Note: Each cell in the table represents a separate RD 
estimate. Each RD estimate uses local linear regression and 
triangle kernel weights. The dependent variable “Meats/
Fishes” is a dummy equal to 1 for an adult who consumed 
meat/fish more than 10 times a week on average in the past 
three months and 0 otherwise. Vegetables and puffed/fried 
foods in Panel A are the average weekly consumption times 
of an adult in the last three months. The dependent variable 
in Panel B is the frequency of an adult’s fitness or physical 
exercise, ranging from 1 (almost daily) to 5 (1 time in a few 
months). All regressions include weather and individual 
controls. Standard errors are reported in parentheses.  
* significant at the 10% level; ** significant at the 5% level; 
*** significant at the 1% level.
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and obesity almost tripled between 1975 and 2016 [2], 
which exceeds the rate of GDP growth during this 
period, and health expenditures typically increase with 
GDP growth, making our estimates low-bound.

Conclusions

This paper sheds light on how increased air pollution 
exposure affects adult body weight in the long term. 
We focus on the winter heating policy in China to 
address the endogeneity problem. Specifically, we used 
a geographic RD framework to estimate whether there 
were discontinuous changes in BMI, overweight, and 
obesity depending on whether they were located north 
or south of the Huai River line. 

We find that the average BMI and rates of overweight 
are about 0.315 units and 6.1 percentage points higher 
in the north, owing to higher outdoor air pollution 
exposure. More generally, a 1 μg/m3 increase in PM2.5 
concentration increases the BMI by 0.014 units and 
the probability of being overweight by 0.3 percentage 
points. The effect of air pollution on being overweight 
is robust across various specifications. The rising risk 
of being overweight caused by air pollution is mainly 
through channels such as increased intake of energy-
dense foods and less physical exercise.

Finally, we conduct a cost-benefit analysis to evaluate 
the economic benefits of the coal-to-gas policy. We 
mainly consider the savings in medical costs associated 
with overweight reduction as benefits. We find that the 
costs of replacing coal with natural gas and electricity 
outweigh the benefits. However, we believe the benefits 
of the coal-to-gas policy will greatly exceed the costs 
if we include other sources of indirect benefits, such as 
lowering premature deaths and gains from improved 
labor productivity. There are still open questions for 
future research, including the effect of coal-to-gas policy 
on body weight.

This study contributes to a broad discussion of the 
relationship between air pollution and health costs. Our 
results indicate that the current emphasis on common 
NCDs such as cardiovascular diseases and diabetes-
related costs understates other hidden costs of pollution 
on being overweight. If we count these additional costs, 
the benefits of reducing pollution would be higher. 
From a policy perspective, evaluating the impact of air 
pollution provides useful information for environmental 
policies. When considering such things as replacing coal 
with natural gas or an air quality improvement program, 
social planners should not ignore its positive effect on 
reducing the risk of being overweight.
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