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Abstract

Small cities warrant focused attention for robust low-carbon development strategies due to their significant 
numbers. In these cities, residential buildings emerge as notable contributors to carbon emissions, consuming 
substantial energy in their operations. This study employs an optimized IPAT equation, utilizing government 
statistical data, satellite remote sensing images, and panel data models to analyze the impact of the urban 
environment on carbon emissions from residential building operations (CERBOs) in 36 small Chinese cities. 
The findings reveal geographical variations in sensitivity to scale, economic, and spatial structure factors. 
Population size, municipal jurisdiction area, urbanization level, GDP, and per capita disposable income 
significantly contribute to CERBOs. Particularly, a 1% increase in municipal jurisdiction area leads to a 
1.698% increase in total CERBOs, the highest influencing factor. Spatial structure only affects western cities, 
with compact development being more conducive to reducing CERBOs. Notably, carbon emissions from 
electricity are more influenced by environmental factors than those from heating and gas. The study proposes 
region-specific low-carbon planning strategies based on these findings. The theoretical optimization model 
proposed in the study, as well as the identified impact factors, will provide a theoretical basis and data support 
for understanding and reducing carbon emissions in small cities.

Keywords: urban environment impact, residential building, operational carbon emissions, small cities, 
panel data model

Introduction

Small cities are the basic units of national territory 
in the “city–town–village” system. Its low-carbon 
development plays an important role in achieving the 
“carbon peaking and neutrality” goal for the country. 

Although the carbon emissions of small cities are lower 
than those of large cities, their quantity is relatively large, 
and the contradiction between economic development 
needs and carbon emission reduction goals is more 
prominent [1-3]. In other words, the economic foundation 
of small cities is relatively backward, and low-carbon 
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development faces significant financial challenges, 
requiring attention to more affordable and controllable 
factors [4, 5]. Under the promotion of urbanization, small 
cities will continue to prioritize economic development 
and increase construction in the future, which will 
continue to increase energy demand and carbon emissions 
in urban buildings [6]. Operational carbon emissions 
account for a considerable proportion of the entire life 
cycle of a building, up to 80% [7-9], including carbon 
emissions from electricity, gas, and heating [9, 10]. 
Residential buildings lead in both energy consumption and 
carbon emissions among all types of buildings [11, 12]. 
According to the Report on Carbon Emissions in China’s 
Urban and Rural Construction Sector in 2022, the carbon 
emissions from residential building operations accounted 
for about 61% of the overall building operational carbon 
emissions in 2021, which is much higher than those of 
public buildings [13]. Reducing carbon emissions from 
residential building operations will have a significant 
impact on overall carbon reduction in small cities [14, 
15].

Scholars widely agree that by comprehensively 
considering and optimizing urban environmental factors, 
effective strategies can be implemented in cities to reduce 
overall carbon emissions from residential buildings 
[16-22]. The universally recognized elements of urban 
environmental impact include two aspects: socio-
economic and spatial structure. 
•	 Regarding socio-economic factors, the IPAT equation 

has consistently been one of the most crucial 
theoretical models for studying the impact of socio-
economics on carbon emissions, which considers 
environmental impacts (I) as a function of population 
(P), affluence (A), and technology (T) [23]. The 
impact of population factors is much higher in 
underdeveloped regions than in developed countries, 
meaning that population growth in small cities or 
rural areas contributes much more to environmental 
impacts than in large cities [24]. Affluence is another 
recognized aspect of influence, typically measured 
by per capita GDP and per capita disposable income 
[25]. The higher the level of affluence, the greater 
the pressure on the environment [26]. An increasing 
number of studies argue that solely evaluating 
affluence through GDP per capita overlooks the 
multifaceted sociological dimensions of this metric 
[27]. Additionally, a single linear relationship does 
not align with the environmental Kuznets curve, 
which illustrates an inverted U-shaped correlation 
between per capita income and environmental 
degradation [28, 29]. However, identifying a turning 
point in the curve, where environmental conditions 
notably improve without deliberate shifts toward 
carbon-reducing technologies, poses a significant 
challenge in countries where CO2 emissions escalate 
alongside energy consumption and economic growth 
[30, 31]. The technology variable is generally treated 
as a residual term in the model and is not evaluated 
directly. It acts as a complementary variable in the 

equation to represent all factors involved, except 
population and affluence level [32, 33]. 

•	 In the realm of urban spatial structure, current 
research suggests that factors like land use patterns 
and urban density significantly impact the clustering 
of regional development, urban economic levels, and 
the scale and layout of infrastructure construction, 
thereby affecting cities’ overall carbon emissions 
[34-36]. Moreover, studies confirm that maintaining 
an appropriate level of urban compactness can 
effectively manage urban sprawl and preserve green 
spaces to mitigate building carbon emissions [37]. 
Nevertheless, a certain threshold of urban compactness 
can lead to various socio-environmental challenges, 
including urban heat islands, a deterioration in air 
quality, and an increased release of greenhouse gases 
[38, 39]. Despite the consensus among scholars 
regarding the importance of rationalizing the spatial 
structure of cities and towns to achieve long-term 
carbon constraints [40-42], the research on low-
carbon spatial planning for small cities is still in the 
exploratory stage due to the limitations of statistical 
data and research methods.

In conclusion, urban environmental factors play a 
significant role in the carbon emissions of residential 
buildings. However, existing studies predominantly 
concentrate on large or typical cities, leaving the 
applicability of these findings to small cities yet to be fully 
confirmed. In light of this, this study first builds a theoretical 
model of the environmental impacts of carbon emissions 
from residential building operations in small cities based 
on the classical IPAT equation. Then, 36 small cities in 
11 provinces (including county-level cities) are selected 
as research objects to conduct an empirical study on the 
impact of urban environments on carbon emissions from 
residential building operations, including carbon emissions 
from electricity, gas, and heating. Primary databases are 
constructed from government statistical yearbooks. Urban 
spatial structures based on land use data are obtained 
from remote sensing images. Panel data models and 
stepwise regression models are established for quantitative 
calculation. Finally, based on the results of the analysis, we 
propose low-carbon-oriented planning recommendations 
for small cities in different regions. The results are 
expected to provide a theoretical basis for recognizing 
the mechanism of influence of urban environments on the 
carbon emissions of residential buildings and a practical 
basis for providing methodological and quantitative 
results to support decision-making in low-carbon-oriented 
planning for small cities.

Data and Methods 

Overview of Sample Cities

The criteria for determining small cities refer to the 
classification issued by the State Council of China, which 
refers to cities with a permanent urban population of 
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less than 500,000 [43]. At present, the statistical method 
of urban data in China is bottom-up, including socio-
economic data and energy consumption data, which may 
lead to differences in the statistical method, data form, 
and data category of each city. Especially in small cities 
with relatively lagging economic development, urban 
data statistics are not standardized, and the lack of energy 
consumption data required for this study is quite common. 
In the data collection process of this study, we found that 
overall, the statistical work of urban data in small cities 
began to gradually improve after 2015, especially in terms 
of urban energy consumption. Therefore, considering the 
classification criteria for small cities and whether they have 
complete statistical basic data, the final observation period 
of the study was determined to be from 2015 to 2021, and 36 
county-level cities in 11 provinces were chosen as the study 
areas. The preliminary data for 36 sample cities is shown 
in Table 1 (using 2021 data as an example). The sample 
cities are scattered across four economic zones in China, 
including the eastern, western, central, and northeastern 
regions. From Table 1, it can be seen that although the 
population of these cities is below 500000, they are not 
consistent in terms of area, urbanization level, and economic 
development, which also ensures that the selected samples 
cover the diversity of small city development as much as 
possible. Due to the wide variety and large amount of data 
involved in this study, the study considers that outliers may 
have an impact on subsequent analysis results. Therefore, 
in the process of data collection, boxplot statistics will be 
conducted for each type of data to find individual outliers, 
and they will be removed or replaced using interpolation 
methods according to specific situations.

Carbon Emissions from Residential Building 
Operations (CERBOs)

CERBOs encompass both direct and indirect carbon 
emissions [44, 45]. Direct emissions originate from fossil 
energy sources like cooking, hot water, and decentralized 
heating. Indirect emissions stem from electricity and heat 
usage. Considering energy sources, CERBOs comprise 

electricity (CE), gas (CG), and heating (CH) components 
[46, 47]. Data for these energy types were sourced from 
the 2015–2021 Statistical Yearbook of China’s Urban 
Construction and city-specific statistical yearbooks. 
As all energy consumption data were standardized to 
coal equivalent, the IPCC 2006 National Greenhouse 
Gas Inventory Guidelines’ emission factor method was 
employed to calculate CERBOs (Equation (1)). The 
descriptive statistics of CERBOs obtained from the 
sample cities through research calculations are shown in 
Table 2.

                            (1)

where CT represents CERBOs (tons), ei is the terminal 
consumption of energy source i, fi is the carbon emission 
factor for energy source i, and n is the number of energy 
sources.

Urban Environmental Impact Factors

This study made targeted optimizations based on 
the classical IPAT equation, which usually involves 
three categories: (1) population; (2) economy; and (3) 
technology [48, 49]. First, this study incorporated factors 
related to land size. In addition, the urban spatial structure 
replaced the classic T elements, considering that factors 
like energy consumption intensity and energy structure 
have a limited impact on CERBOs [50]. In summary, this 
study considers the following three types of factors:

Scale Factors

According to existing studies, the scale factors refer 
to the indicators of population size, land use size, and 
urbanization level [51-55]. The total population of urban and 
rural residents (POPt) is used to characterize the elements 
of population size. The area of municipal jurisdiction (Am) 
and the proportion of urban construction land (pc) is used to 
represent the element of land size. The urbanization level 
(UL) and urban population proportion (ppop) are used to 

Table 1. Primary data of sample cities.

Region Province Number of 
cities Area (km2) Population 

(104 people)
Urbanization rate 

(%)
GDP (100 

million yuan)

Eastern

Jiangsu
Zhejiang
Fujian

Shandong

18 500.00–
2171.00 14.06–37.5 41.70–70.82 448.02–3151.08

Central

Shanxi, 
Anhui, 
Henan,
Hubei

7 367.10–
4093.70 23.68–43.00 48.65–68.17 762.23–3362.11

Western
Inner 

Mongolia, 
Shaanxi

5 393.80–
3212.00 26.08–45.80 51.07–74.76 903.61–2087.21

Northeastern Jilin 6 432.40–
2568.80 22.75–46.17 32.26–73.67 463.49–817.71
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characterize the element of the urbanization level. The key 
indicators are explained below:
•	 The proportion of urban construction land (pc): the 

proportion of urban construction land in the total 
land area.

•	 Urbanization level (UL): the proportion of the urban 
population to the total population.

•	 Urban population proportion (ppop): the proportion of 
the resident population in the main metropolitan area 
to the total population.

Economic Factors

The economic influence on CERBOs mainly manifests 
in the economic level of cities and the living consumption 
level of residents [56-58]. The gross domestic product 
(GDP) is used to characterize the element of regional 
economic scale. The proportion of tertiary industry to 
secondary industry (pt-s) and per capita GDP (GDPpc) are 
used to describe the urbanization level of the regional 
economy. Per capita disposable income (DIpc) is used to 
characterize the consumption level of the residents.

Spatial Structure Factors

The urban spatial structure discussed in this study is 
based on the perspective of land use at the urban macro-
level. The landscape pattern index is a widely recognized 
indicator for characterizing urban macro-scale spatial 
structure [59, 60]. The following five indicators are 
selected to calculate the urban spatial structure based on 
the previous studies. 

The cohesion index (COHESION) and artificiality 
index (AI) are key metrics for characterizing urban 

compactness, with COHESION measuring physical 
connectivity (0-100 range) [61, 62] and AI representing 
urban concentration (0-100 range) [63]. Urban complexity 
is quantified using the mean patch shape index (SHAPE_
MN), with higher values indicating more irregular 
shapes. Circumscribing circle distribution (CIRCLE_
MN) is employed to assess urban shape by measuring 
the circularity and elongation of patches [64]. The largest 
patch index (LPI) gauges the extent of a singular center 
[65], indicating the proportion of the main center area 
relative to the total built-up area, with higher values 
indicating a larger city center. Remote sensing data from 
2015 was chosen for analyzing urban spatial structure due 
to the cyclical nature of data acquisition and stable land 
use characteristics in small cities over short periods. Data 
was sourced from the Institute of Geographic Sciences 
and Resources of the Chinese Academy of Sciences, and 
interpreted through Landsat TM/ETM imagery (30*30m 
resolution). City boundary shapefiles were obtained from 
the National Mapping Center of China. Computational 
analyses were conducted using Fragstats software.

Panel Data Modeling

In this study, panel data analysis was employed 
to develop regression models for estimating carbon 
emissions. This methodology helps control potential 
biases arising from unobservable individual and 
temporal effects, enhancing data accuracy. Additionally, 
it captures the dynamic adjustment process, improving 
understanding of variable interrelations [66]. The 
model equation is detailed in Equation (2). To address 
heteroscedasticity and non-stationarity in the time series 
data, a natural logarithm transformation was applied to 

Table 2. Descriptive statistics of total CERBOs in sample cities.

Region statistics 2021 2020 2019 2018 2017 2016 2015

Eastern

Min 271.43 258.31 247.63 236.94 209.19 202.98 175.80
Max 2173.68 2041.15 1886.84 1743.38 1603.24 1521.27 1436.42

Std Dev 450.32 421.38 386.37 352.09 322.40 305.41 293.62
Mean 700.45 658.47 613.57 580.91 530.80 485.99 434.24

Central

Min 381.92 363.31 343.76 343.69 320.21 205.66 163.86
Max 2413.23 2403.35 2219.30 2035.08 1648.79 1523.83 1395.02

Std Dev 749.62 726.46 659.16 592.50 488.91 506.49 461.64
Mean 1196.39 1141.64 1046.68 982.28 844.56 714.59 636.06

Western

Min 453.76 474.19 445.35 427.86 392.35 174.52 121.71
Max 2248.92 2311.27 2254.97 2219.29 1986.82 1702.09 1366.88

Std Dev 668.75 701.84 702.77 688.56 608.79 591.52 471.74
Mean 924.35 914.63 856.26 846.57 778.25 526.33 427.88

Northeastern

Min 341.20 333.70 309.96 298.59 281.64 269.09 254.20
Max 857.40 812.73 979.35 970.14 871.37 950.91 891.17

Std Dev 177.30 164.76 229.75 228.05 202.93 226.47 214.95
Mean 626.60 603.61 632.83 615.14 580.24 580.31 554.15

*unit of the CERBOs : 103 ton
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all variables. This adjustment was conducted using Stata 
statistical software.

                  (2)

where yit denotes the value of the dependent variable 
corresponding to individual i at time t, specifically 
representing CERBOs within the scope of this study; 
xit signifies the value of the independent variable for 
individual i at time t, encompassing scale and economic 
factors.

Stepwise Regression Modeling

We opted for a step-by-step regression model to 
assess the impact of spatial structure factors on CERBOs, 
as temporal changes in relationships weren’t a concern. 
Initially, we conducted Spearman correlation analysis 
to identify significant factors affecting CERBOs, 
considering correlations with significance levels of 0.01 
or 0.05 (two-tailed). Since the spatial structure factors 
are scattered and do not show a normal distribution, 
Spearman correlation analysis was chosen. Addressing 
multicollinearity is crucial, as it can lead to unstable 
coefficient estimates [67]. To evaluate multicollinearity, 
we utilized the variance inflation factor (VIF) as a test 
indicator (Equation (3)). If VIF exceeds 5, removing the 
variable from the model should be considered [68]. 

                            (3)

where  is the coefficient of determination obtained 
by regressing the i-th independent variable on all other 
independent variables.

After completing the above two tests, the study 
constructs a forward stepwise regression model, which 
gradually adjusts the model by adding or removing 
variables according to specific criteria at each step to find 
the best fit. The entry and exit probabilities for the F-test 
were set to 0.05 and 0.10, respectively.

Results

The study approaches the identification and 
quantification of influencing factors through two main 
aspects. Firstly, the study unifies the factors of scale 
and economy into one model for discussion, mainly 

considering the certain correlation between urban scale 
and socio-economic factors, which usually change 
together with urban development. This integrated analysis 
facilitates the comparison of impact strengths, assisting in 
the prioritization of factor adjustments during planning 
decisions. Second, the spatial structure is addressed 
separately due to its slower rate of change and indirect 
influence on carbon emissions compared to scale and 
economic factors.

Impact of Scale and Economics on CERBOs

We first constructed four panel data models, which 
respectively describe the relationship between impact 
factors and total carbon emissions, electricity-related 
carbon emissions, gas-related carbon emissions, and 
heat-related carbon emissions. 

First, the HT test (hypothesis testing) for the 
smoothness test was conducted since the data in this study 
are short panel data (t < n). The p-value of all HT tests 
was below 0.1, indicating that a panel data model can 
be directly established. Then, both F-tests and Hausman 
tests were executed to ascertain a suitable structure for 
the panel data models (Table 3). The outcomes of the four 
models consistently indicated the adoption of variable 
intercepts in these models, based on the F-statistic. The 
obtained p-values of Hausman tests imply that a fixed 
effects estimator is more suitable for both Models 1, 2, 
and 3, and a random effects model is more fitting for 
Model 4.

In this study, the logarithmic treatment of CERBOs 
and dependent variables was used to enhance the 
comparability of the same indicators. The results of the 
panel data model (Table 4) show that the environmental 
impact factors of CT and CE are the same: POPt, UL, Am, 
GDPpc, pt-s, and DIpc. The coefficients of determination 
of the regression models for these two types of carbon 
emissions are also the highest among the four models, 
which are 0.44 and 0.399, indicating that the influence of 
environmental factors on the CERBOs is mainly reflected 
in CE. In contrast, CG has a weaker relationship with 
environmental factors and is positively correlated only 
with POPt in the scale factors and DIpc in the economic 
factors. Carbon emissions from heating do not show a 
significant correlation with environmental factors. Taking 
CT as an example, UL, pt-s, and DIpc are more closely 
related to the elasticity of carbon emission growth. The 
regression coefficients show that for every 1% increase 

Table 3. F-test results and Hausman test results of Model 1 to Model 4.

Model F-test Hausman test (p-value)
Model 1 (CT) F(12.938293)>F0.05 (1.4482692) 0.0039
Model 2 (CE) F(11.110746)>F0.05 (1.4482692) 0.0093
Model 3 (CG) F(33.425717)>F0.05 (1.4482692) 0.0097
Model 4 (CH) F(3.9786499)>F0.05 (1.7268983) 0.6444
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in POPt, UL, Am, GDPpc, pt-s, and DIpc, CT increases by 
0.428%, 0.664%, 1.698%, 0.306%, 0.239%, and 0.42%, 
respectively. It is easy to see that the element of land use 
size has a robust elasticity mechanism in CT, and other 
indicators have a similar contribution to the elasticity of 
CT growth.

The development level of small cities in different 
regions and the living habits of residents vary greatly. 
Therefore, panel data models are constructed separately 
for the samples of the eastern, central, western, and 
northeastern regions. The test results indicate that the 
random effects model is more suitable for the eastern 
city, and the fixed effects model is selected for panel data 
regression for the other three models (Table 5).

Overall, environmental factors significantly impact 
CT in the eastern and western regions, with significant 
differences in the indicators and a minor impact on 
CERBOs in the northeastern and central regions (Table 
6). The results for small cities in the east show that DIpc 
is more strongly correlated with CT, and the indicators 
of land use size contribute more to the elasticity of CT. 
Neither the population nor the economic urbanization 
level significantly affects CERBOs in eastern cities. On the 
contrary, the results for small cities in the west show that 
both the population and economic urbanization levels affect 
CT, and the elasticity coefficients are significantly higher 
than the national level of all samples. For every 1% increase 

in UL and every 1% increase in pt-s, CT rises by 3.256% 
and 0.927%, respectively. In addition, the effects of Am and 
DIpc on CT are similarly higher than those at the national 
level. The impact of the urban environment on CERBOs in 
small northeastern cities is relatively homogeneous, mainly 
in terms of UL, and the trend is opposite to the national 
average. For every 1% decrease in UL and 1% decrease in 
ppop, CT will increase by 0.386% and 0.66%, respectively. 
The environmental impact of economic factors on CERBOs 
in small cities in central China is dominant. With a 1% 
increase in DIpc, CT will rise by 1.235%. 

Impact of Spatial Structure on CERBOs

Fig. 1 shows the urban land use map identified in this 
study based on remote sensing image data. Land types 
are divided into six categories: cropland, forestland, 
grassland, rivers, construction land, and unused land.

The stepwise regression results show that COHESION 
is the only influential indicator (Table 7), negatively 
related to CT, which means the more compact the spatial 
structure of a small city, the lower the total CERBOs. 
However, the coefficient of determination of the regression 
equation is low, which indicates that the overall sample 
model has low explanatory power. Due to the fact that gas 
is mainly used for cooking and heating among the three 
types of CERBOs, its relationship with urban spatial 

Table 4. Results of the panel data model estimation of Model 1 to Model 4.

Variable
Model 1 

(All samples)
Model 2

 (Electricity)
Model 3
 (Gas)

Model 4
 (Heating)

ln(CT) Ln(CE) Ln(CG) Ln(CH)
ln(POPt) 0.428** 0.448* 0.417** 0.025
ln(Am) 1.698** 1.761** 0.194 0.440
ln(pc) 0.155 0.173 0.088 0.194

ln(UL) 0.664*** 0.702** 0.096 0.526
ln(ppop) 0.115 0.144 0.070 -0.434

ln (GDP) -0.031 -0.030 -0.004 0.085
Ln(GDPpc) 0.306** 0.343** 0.053 0.173

Ln(pt-s) 0.239*** 0.254*** 0.074 0.100
Ln(DIpc) 0.420*** 0.407*** 0.743*** 0.584

_cons 20.136*** 19.932*** 6.737*** 2.763
N 252.000 252.000 252.000 98.000
r2 0.440 0.399 0.228 0.171

*, ** and *** indicate significance at 10%, 5% and 1%, respectively.

Table 5. F-test results and Hausman test results of Model 5 to Model 8.

Model F-test Hausman test (p-value)

Model 5 (CT of eastern) F(10.199691)>F0.05 (1.6578673) 0.8201

Model 6 (CT of central) F(3.0490751)>F0.05 (1.9805283) 0.0016

Model 7 (CT of western) F(11.258395)>F0.05 (2.3209534) 0.0003

Model 8 (CT of northeastern) F(8.5990365)>F0.05 (2.1655403) 0.0001
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Table 6. The panel data model estimation results of Model 5 to Model 8. 

Variable
Model 1 (All 

samples)
Model 5 (Eastern 

Region)
Model 6 (Central 

Region)
Model 7 (Western 

Region)
Model 8 (Northeastern 

Region)
ln(CT) ln(CT) ln(CT) ln(CT) ln(CT)

ln(POPt) 0.428** 0.383** 0.736 1.632 0.064
ln(Am) 1.698** 0.776** 16.470 6.342** 0.335
ln(pc) -0.155 0.152** -0.365 -0.330 0.161

ln(UL) 0.664*** 0.035 -0.263 3.256*** -0.386*

ln(ppop) 0.115 0.097 -0.015 -1.920 -0.660***

ln (GDP) -0.031 0.277** -0.053 -1.438 -0.021
Ln(GDPpc) 0.306** 0.089 0.444 1.287 -0.019

Ln(pt-s) 0.239*** 0.085 -0.215 0.927*** 0.023
Ln(DIpc) 0.420*** 0.454*** 1.235** 1.502** 0.228

_cons 20.136*** 2.792 129.296 64.403*** 22.122***

N 252.000 119.000 56.000 35.000 42.000
r2 0.440 0.882 0.621 0.849 0.700

*, ** and *** indicate significance at 10%, 5% and 1%, respectively.

Fig. 1. Example of the remote sensing images of sample cities used to calculate the urban spatial structure indicators. 

Table 7. Stepwise regression results of all samples.

Dependent Variable Independent 
Variable

Non-Standardized Coefficient Standardized 
Coefficient Sig. R2

B Standard Error

CT

Constant 0.486 0.093 -- 0.000 0.154
COHESION -0.376 0.151 -0.392 0.018 --

CE

Constant 0.438 0.090 -- 0.000 0.121
COHESION -0.317 0.147 -.348 0.038 --

structure is usually weak. The preliminary hypothesis 
is whether the type of CERBOs affects the explanatory 
power of the model. Therefore, we separately regressed 
the spatial structure factors with the three types of carbon 
emissions to further explore whether the effect acts only 
on a specific type of carbon emission. The results show 
that carbon emissions from electricity show a similar 
pattern to that of overall carbon emissions. However, the 
coefficient of determination is still low (0.121). 

Furthermore, the study considers that spatial structure, 
to some extent, characterizes the development stage 
and urbanization level of a city, which also affects the 
electricity consumption of residents. Furthermore, this 
study hypothesizes whether the explanatory power of the 
model is influenced by the socio-economic differences 
within small cities themselves. Therefore, a separate 
stepwise regression analysis was conducted on small 
cities in different economic geographical zones (Table 8). 
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As expected, the effect of the spatial structure on CERBOs 
in small cities varies considerably across regions. 
Specifically, under the current stage of development, the 
spatial structure only affects CERBOs in small cities in 
the western region. It is noteworthy that the coefficients 
of determination of the models for small cities in the 
western region are all higher than 0.8, indicating that 
the regression models have more substantial explanatory 
power. The regression results show that COHESION 
is still the only spatial structure indicator impacting 
CERBOs in small cities in the western region. The more 
compact the spatial structure, the lower the CERBOs. 
This conclusion applies not only to the total CERBOs but 
also to the carbon emissions from electricity and gas.

Discussion

Characteristics of the Impact of the Urban 
Environment on CERBOs in Small Cities

The research will discuss the study results from two 
perspectives: significant impact factors and affected types 
of carbon emissions. Analyzing impact factors aims to 
understand the reasons and pathways through which 
these factors affect CERBOs. This analysis of influencing 
mechanisms serves as a necessary foundation for forming 
low-carbon-oriented planning decisions. On the other 
hand, analyzing affected types of carbon emissions 
extends the previous analysis, aiming to clarify which 
types of carbon emissions are influenced by the indicators 
regulated in planning decisions, thereby making planning 
decisions more targeted.

Impact Factors

The total resident population and urban construction 
land proportion, reflecting population size and land use, 
along with GDP and per capita GDP indicating economic 
development, have a limited impact on CERBOs in small 
cities, unlike findings in large city research. While spatial 
structure influence trends align with large city research 
and impact factors, and indicators are more uniform.

Regarding scale factors, the municipal jurisdiction’s 
area primarily influences CERBOs and is influential 

in national, eastern, and western models with high 
coefficients. However, urban construction land proportion 
only correlates with eastern cities, likely due to faster 
development and significant expansion with economic 
growth. In contrast, central, western, and northeastern 
regions’ small cities experience slower economic growth, 
resulting in less significant changes in built-up areas over 
the study period. This may also explain why the resident 
population indicator is only adopted in the models for 
the national level and the eastern region. The impact of 
urbanization level on CERBOs is particularly noticeable 
in small cities within western and northeastern regions. 
The main reason is that the economic conditions in these 
regions are slower than those in other regions, and the 
living standards and energy use patterns in cities and 
villages are significantly different from those in other 
areas. The difference, however, is that an increase in the 
urbanization level of the population leads to a rise in 
CERBOs in the western region, while on the contrary, 
there is a decrease in the northeastern region. In our study, 
we attribute the contrasting outcomes of carbon emissions 
to heating practices. The northeast, being notably cold, 
sees substantial energy consumption for heating in the 
winter, especially in residential buildings. Centralized 
heating systems, commonly used in northeastern cities, 
prove more efficient in reducing carbon emissions 
compared to rural areas’ reliance on firewood or coal 
for independent heating. Hence, the rise in urbanization 
levels in small northeastern towns, including urban 
population proportions, will lead to decreased CERBOs.

In terms of economic factors, most models indicate 
a positive correlation between per capita disposable 
income and CERBOs, with no observed inflection point. 
This result is consistent with the development stage of 
small cities in China. Currently, the overall awareness 
of emission reductions among residents of small cities 
is still insufficient. The priority of increasing affluence is 
to improve living environments and convenience, which, 
in turn, leads to more CERBOs. Although residents’ 
affluence correlates with total GDP or economic intensity, 
recent population shrinkage or declining growth rates in 
small cities can disrupt the relationship between CERBOs 
and affluence/economic levels. This also manifests as the 
impact of GDP and per capita GDP on CERBOs being 
lower than per capita disposable income.

Table 8. Stepwise regression results of cities in the western region.

Dependent 
Variable

Independent 
Variable

Non-Standardized Coefficient Standardized 
Coefficient Sig. R2

B Standard Error

CT

Constant 0.815 0.188 -- 0.023 0.807
COHESION -0.916 0.259 -0.898 0.038 --

CE

Constant 0.760 0.174 -- 0.022 --
COHESION -0.836 0.239 -0.896 0.040 0.803

CG

Constant 0.240 0.045 -- 0.013 --
COHESION -0.244 0.062 -0.916 0.029 0.840
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Compact urban structures, found to be conducive to 
reducing CERBOs, show similar benefits in both small and 
established large cities. However, this effect is particularly 
noticeable in small western cities, possibly due to 
differing approaches to urban development across China’s 
geographic subregions. There has been a problem with 
the blind expansion of small cities in the western region. 
Although academics have recognized the drawbacks of 
such development forms, the decentralized urban structure 
formed in the past few decades and the low density and 
inefficient use of space caused by population loss in recent 
years have become typical characteristics of the western 
region. In addition, the SHAPE_MN and LPI indicators, 
which have received more attention in studies of large 
cities, are not included in the regression model of small 
cities. This result also reflects the particular characteristics 
of the development stage of small cities. Although the 
model has not shown an inflection point for the time 
being, it can be hypothesized that the higher the level of 
urban development, the more complex the mechanism of 
influence of spatial structural factors on CERBOs.

Types of Operational Carbon Emissions

Carbon emissions from residential buildings’ 
electricity consumption in small cities are highly 
sensitive to urban environmental factors, particularly 
the economic urbanization level and residents’ living 
consumption levels. The area of municipal jurisdiction, 
which characterizes the size of the city, has the most 
significant impact on elasticity coefficients. The results 
of this characterization align with the expectation that 
economic factors are more closely correlated with carbon 
emissions from electricity, but scale factors have a more 
significant impact on carbon emissions from electricity. 

For carbon emissions from gas, the impact of 
economic factors is higher than that of scale factors. 
In many small cities in China, gas is used not only for 
cooking but also for domestic hot water. An increase in 
population size will inevitably lead to an increase in total 
gas demand, and an increase in the standard of living will 
also introduce the need for greater comfort.

Carbon emissions from heating do not exhibit any 
correlation with urban environmental factors in this 
study. However, speculative analysis suggests a negative 
correlation between urbanization levels and overall 
CERBOs, supported by existing research indicating the 
urban environment’s notable influence on heating-related 
emissions. Therefore, we believe that the following are 
possible reasons for these results: 1) only 11 out of 36 
sample cities require winter heating, which may not 
represent the overall situation of heating in small cities 
across the region; and 2) the development of small cities 
is relatively slow, and during the research period, the 
heating capacity of winter urban centralized heating 
systems did not show significant changes. Although 
urbanization levels may affect overall carbon emissions, 
their degree of impact may not be significant enough to 
be presented in a multi-factor model.

Suggestions for Low-Carbon-Oriented Small City 
Planning in Different Geographical Regions

The influence of environmental factors in small cities 
on CERBOs shows differences among regions. As the 
development stage, construction characteristics, and 
residents’ living habits in small cities vary considerably 
across different regions, the low-carbon-oriented planning 
suggestions cannot be generalized.

The development speed of small cities in the eastern 
region surpasses the national average. Population 
size and land size have a more significant impact on 
CERBOs. Therefore, it is imperative to judiciously 
manage the growth rate and increment of scale factors in 
the development of small cities in the east. For instance, 
stringent control over land use planning and constraining 
land supply for construction are recommended measures. 
Urban development can be promoted by increasing 
the urbanization rate rather than the scale. This can be 
achieved through initiatives such as enhancing urban 
infrastructure, providing more employment opportunities, 
and attracting talent. At the same time, cities should persist 
in promoting low-carbon lifestyles, allowing residents 
to improve their living standards while improving 
energy efficiency, reducing energy waste, and ultimately 
achieving the goal of reducing CERBOs in their daily 
lives. Encouraging walking, cycling, and the use of public 
transportation to mitigate carbon emissions is advisable. 
Furthermore, incentives or subsidies can be offered 
to incentivize residents to purchase energy-efficient 
appliances and participate in energy-saving activities. 
Education and advocacy efforts should also be prioritized. 
Cities can organize campaigns for energy conservation 
and environmental protection, such as energy-saving 
promotion weeks or months, to disseminate energy-
saving knowledge and environmental awareness among 
residents, thereby fostering the widespread adoption of 
low-carbon, green lifestyles [69].

Small cities in the western region are relatively 
underdeveloped regions in China, and the historical 
legacy of sprawl is common due to the process of urban 
development. Therefore, at this stage, small cities in 
western regions should prioritize the intensive and compact 
development of urbanization patterns. This entails taking 
measures in urban planning and land use. For instance, 
optimizing urban layouts by planning and designing them 
to ensure the rational distribution of infrastructure and 
public service facilities, thereby reducing resource waste 
and energy consumption, additionally, increasing building 
density and encouraging the construction of high-density 
residential and commercial areas within cities will minimize 
land usage and promote transportation convenience and 
resource utilization efficiency. Furthermore, these cities 
should exercise greater caution in land use and population 
urbanization to balance the delicate relationship between 
economic growth and CERBOs. It is necessary to control 
the speed and scale of land development by implementing 
stringent land use planning and control measures to restrict 
excessive land development and ensure the sustainable 
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utilization of land resources. Regular assessments of 
population growth trends and the supply-demand status of 
urban resources should also be conducted to adjust urban 
planning and policy measures accordingly in order to 
adapt to population changes and urban development needs, 
thus avoiding excessive resource consumption and the 
exacerbation of environmental burdens. At the same time, 
they should also focus on advocating for and popularizing 
low-carbon lifestyles among residents.

Compared with the two regions mentioned above, 
the problems faced by small cities in the central and 
northeastern parts of the country are relatively simple 
and homogeneous. In the central region, the impact of 
the population’s affluence on CERBOs is much higher 
than the national average. Therefore, this region should 
emphasize and continue strengthening the guidance 
of low-carbon lifestyles for the population. Urban 
management should be encouraged to implement more 
incentive policies and economic compensations for low-
carbon lifestyles. However, the urbanization level of the 
people in northeastern China should continue to improve. 
For example, enhancing urban infrastructure construction, 
including transportation, water supply, power supply, and 
communication, will improve urbanization levels and 
residents’ quality of life. Improving the level of urban 
public services, such as education, healthcare, and social 
security, can attract more people to urban areas and 
promote the improvement of urbanization levels.

In addition, although the degree of compactness of 
spatial structure is relevant only in the western region, we 
still suggest that small cities should be oriented toward 
compact development, taking into account the existing 
studies and experiences of urban development. Although 
some studies have also pointed out that compact 
development may also lead to increased CERBOs 
(Jin, 2011), this inflection point is less likely to occur 
in the near-term development of China’s small cities, 
considering the gap between small and large cities. At the 
same time, considering the current problem of population 
shrinkage in small cities in general, intensification and 
compactness will be necessary trends in developing their 
spatial structure.

Research Limitations

This study has two limitations that may affect the 
results: (1) The spatial structure factors cannot be collected 
for consecutive years. Remote sensing image maps are 
captured once every five years. Thus, the analysis of 
spatial structure factors in this study only matches the 
year 2015. In future research, we will expand access to 
spatial structure data by cooperating with government 
departments to obtain land use data or by searching 
through map libraries. (2) The sample cities did not 
achieve full national coverage. Due to the completeness 
of the statistical data for China’s small cities, we excluded 
many small cities from the sample selection. However, 
we tried to ensure that a certain number of sample cities 
within each geographic sub-region were included. In the 

future, we will consider further expanding the primary 
database through cooperation with the government or 
relying on scientific research organizations.

In addition, the results of this study may only be able 
to characterize the unique situation in China, given the 
rapid socio-economic development of Chinese cities. 
Therefore, we believe that research in this area can be 
expanded in two ways: (1) comparing the differences 
in the impacts of urban environments on CERBOs in 
developed countries and low-carbon development regions 
around the world, either historically or at the current 
stage of development, and (2) continuously tracking 
the changes in the impact of the urban environment on 
CERBOs in small cities in the near future (peak carbon 
levels in 2030) and the far future (carbon neutral in 2060) 
under the influence of various related policies following 
China’s “dual-carbon” goal proposal.

Conclusions

In this study, the urban environmental impact on 
CERBOs in 36 small cities in eastern, central, western, 
and northeastern China is empirically studied. Panel data 
models and stepwise regression models are adopted to 
identify the impact factors and the quantitative calculation 
of the degree of influence. Finally, low-carbon-oriented 
planning recommendations are proposed for small cities 
in different regions based on the analysis results. The 
main conclusions of the study are as follows:

First, the indicators and impact of the urban 
environment on CERBOs in small cities are not the 
same as those in large cities. Although the spatial 
structural elements are consistent with the influential 
trends observed in large cities, the types of indicators 
are relatively limited. It is worth noting that there are 
regional differences in the impact on CERBOs. CERBOs 
in the eastern small cities are more sensitive to scale 
factors. The indicator of the economic factor has a higher 
impact in the central and western regions. CERBOs in 
the western small cities are more sensitive to urbanization 
levels and the area of municipal jurisdiction. The west 
is the only region closely related to the spatial structure 
factor, where the spatial compactness shows a significant 
negative correlation with CERBOs. In the small cities in 
the northeast, CERBOs are more affected by urbanization 
levels, and the trend is opposite to that of other regions.

Second, carbon emissions from electricity are most 
influenced by environmental factors. The economic 
urbanization rate and the consumption level of residents 
are most closely related to carbon emissions from 
electricity. The area of municipal jurisdiction has 
the maximum elastic influence coefficient among all 
indicators. In small cities in the western region, the 
compactness of the urban spatial structure significantly 
affects carbon emissions from electricity, but to a lesser 
extent than carbon emissions from gas.

Finally, based on this study, we recommend low-
carbon-oriented planning for small cities in different 
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regions. The development of small cities in the eastern 
region should carefully control the increment in and 
growth rate of scale factors. Urban development can 
be promoted by increasing the level of urbanization 
rather than the scale. At this stage, small cities in the 
western region should focus more on the intensive and 
compact development of their urbanization patterns. In 
the northeastern region, the urbanization level of the 
population should be continuously increased. 

The underlying data mainly cause the limitations of 
this study. In the future, we will explore acquiring and 
mining multivariate data and conducting comparative 
studies spanning both time dimensions and geographical 
latitudes.
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