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Abstract

In the context of global sustainable development goals and heightened environmental awareness, 
the imperative to evaluate the eco-efficiency of mining becomes paramount. However, the escalated 
mining activities result in the generation of wastewater, exhaust gas, and solid waste, posing a threat 
to the environment. This study endeavors to assess the mining eco-efficiency across Chinese provinces 
by introducing a pioneering assessment index system and framework. The framework incorporates the 
non-desired output SBM-DEA model and the Malmquist-Luenberger total factor productivity index 
model. To validate the reliability of the model, it is applied to 27 provinces in China. The findings unveil 
significant insights: (1) The mining eco-efficiency of Chinese provinces exhibits an overall positive 
trend but displays notable spatial variations; (2) East China demonstrates superior technical progress 
and overall technical efficiency, while North, Northeast, and Northwest China lag in technical progress 
but excel in overall technical efficiency. Notably, non-desired outputs exert an influence on China’s level 
of green mining development, particularly in Northeast and Central China. The study recommends that 
enterprises shoulder the responsibility of environmental management and mine restoration, enhance 
their capacity for innovation in green technology, and expedite the construction of green mines to 
augment mining eco-efficiency. These results furnish valuable perspectives and pertinent information 
for decision-making related to green mining development, energy structure transformation, and the 
implementation of large-scale mining projects.

Key Words: ecological efficiency, mining industry, SBM-DEA model, Malmquist-Luenberger 
productivity index
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Introduction

Amidst increasing economic globalization and 
industrialization, mining activities have surged [1, 
2]. While mineral resources are vital for societal 
development, excessive mining due to high demand has 
led to severe environmental and social consequences like 
land pollution, soil erosion, and ecosystem destruction 
[3, 4]. Aligned with the United Nations Sustainable 
Development Goal 7 and the European Union’s focus 
on green development, China has initiated a green 
development strategy to harmonize environmental 
protection and mineral resource efficiency [5, 6]. Hence, 
exploring eco-efficient mining and promoting green 
mining development is a vital global imperative.

In recent years, the promotion of carbon-neutral 
strategies has facilitated the development, and practical 
deployment of renewable energy technologies, including 
solar, wind, and biomass [7, 8]. This trend suggests 
that large-scale implementation of new energy sources 
is possible, and has a significant substitution effect on 
reducing the demand for coal mining [9]. European 
countries have already implemented “coal phase-
out” energy policies to achieve carbon reduction and 
sustainable development goals [10]. The implementation 
of these policies is not only important for the European 
countries themselves but also has a direct and profound 
impact on the Chinese energy sector [11, 12]. Under this 
background, coal mining regions in China should take 
measures to improve eco-efficiency in order to adapt 
to the challenges of carbon neutrality, and for better 
promotion, transformation, and up gradation of the 
regional economy.

As the largest developing country, China faces 
challenges in mining development due to economic 
structural issues, slow growth of alternative industries 
[13], and ecological concerns [7, 12]. In 2013, the State 
Council issued a directive urging resource-based cities 
to shift from the traditional “black development” model 
to a “green development” model, aiming for sustainable 
economic, social, and environmental progress 
through ecological construction and environmental 
remediation (http://www.gov.cn/zhuanti/2013-12/03/
content_2609341.htm). Unlike other industries, mining 
development can fundamentally damage the original 
ecosystem, impacting surface stability through open pit 
excavation, dump occupation, mine exploitation, tailings 
heap occupation, and mining community construction 
[14]. This damage may even lead to the disappearance 
of ecosystems over time [15, 16]. Therefore, evaluating 
mining eco-efficiency is crucial for transitioning to 
a “green development” model, enhancing economic 
efficiency, and ensuring regional sustainability.

In the realm of eco-efficiency evaluation, 
scholars generally acknowledge its pivotal role in 
sustainable development [17, 18]. Existing research 
primarily employs energy value synthesis, ecological 
footprint analysis, life cycle assessment, and data 
envelopment analysis for eco-efficiency studies [19, 

20]. A growing number of researchers have adopted 
a combination of methods. One category involves 
combining data envelopment analysis with energy 
value analysis, ecological footprint analysis, and life 
cycle assessment [21-23]. Another category integrates 
Data Envelopment Analysis (DEA) with econometric 
models and geographically weighted regression models  
[3, 24]. However, prior studies often rely on static 
panel data, conducting quantitative analyses from 
the perspective of ecological economics, lacking 
dynamic assessments of industry eco-efficiency [25, 
26]. In contrast, this study innovatively integrates 
the non-expected output Slacks Based Measure-Data 
Envelopment Analysis (SBM-DEA) model and the 
Malmquist-Luenberger index to assess the mining eco-
efficiency of Chinese provinces.

Many studies have effectively assessed eco-
efficiency from different aspects, but diverse findings 
pertaining to the assessment of eco-efficiency in the 
mining industry have been reported. For example, Wang 
et al. (2019a) assessed the eco-efficiency of 28 typical 
coal mining resource-based cities in China, and their 
results showed significant regional variability, and that 
the level of technological innovation and marketization 
can significantly improve eco-efficiency [6]. Zhang et 
al. (2020) showed that mining eco-efficiency in China 
showed a series of changes in stages between 2008 
and 2019, mainly due to the redundancy of inputs and 
outputs, and environmental pollution. In addition [27], 
Chen et al. (2022) evaluated the eco-efficiency of the 
circular economy chain in the Longkou coal mining 
area from 2008 to 2020 by considering the energy-value 
synthesis of undesirable outputs, and super-efficiency 
based on relaxed measure data envelopment analysis 
(SBM-DEA) [28]. Luo et al. (2023) evaluated the green 
development and eco-efficiency of the mining industry, 
explored the internal system degree of coupling 
coordination, and found that the national Green 
Mining Development Index (GMDI) showed a stable 
coordination state, but the stage balance relationship 
was inconsistent and lacked extreme coordination [29]. 
However, despite the good results of these studies, the 
effects of spatial heterogeneity, and regional differences 
were not considered.

Despite the numerous studies suggesting both 
quantitative and qualitative methods for mining eco-
efficiency evaluation, it remains a multi-dimensional 
decision-making process [30, 31]. The primary challenges 
lie in the statistical randomness and fuzzy classification, 
hindering a comprehensive and effective assessment of 
the ecological efficiency of the mining industry [32]. 
Hence, existing models and frameworks for mining 
eco-efficiency assessment require further discussion. 
Previously, mining eco-efficiency measurements were 
limited to single-region or single-year data, lacking  
a holistic view, and neglecting the exploration of changes 
in eco-efficiency levels. This study addresses these gaps 
by proposing a novel framework (Fig. 1) that employs 
mathematical modeling, specifically the non-expected 
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output SBM-DEA model and Malmquist index. This 
approach analyzes Chinese provincial panel data to 
illustrate mining eco-efficiency trends. Additionally, 
the study delves into spatial differences in green mining 
development through descriptive statistics and quadrant 
diagrams, providing empirical analysis-based policy 
recommendations to enhance green mining in China.

The study introduces key innovations and 
contributions: (1) A tailored index system is devised 
for accurate measurement of mining sector ecological 
efficiency; (2) A pioneering assessment framework is 
crafted, merging the non-expected output model with 
the Malmquist-Luenberger index model for mining 
eco-efficiency evaluation; (3) This framework will 
holistically assess the evolving trend of mining eco-
efficiency in China, offering insights for mining 
management and planning, fostering the harmonized 
and sustainable development of the mining industry, 
ecology, society, and economy.

Indicators and Data Collection

Indicators

Assessing mining eco-efficiency is a multifaceted 
endeavor, involving various factors like social 
economy, technological innovation, and ecological 
environment [33-35]. Interactions exist among factors, 
such as the environmental impact of mining activities 
and their economic benefits. To effectively evaluate 
mining ecological efficiency and gauge its social and 
environmental impacts, precise indicators must be 
chosen. Adhering to the principles of subject orientation 
and index data availability, we comprehensively 
considered input, expected output, and non-expected 
output from an input-output perspective. This approach 
led to the creation of a comprehensive evaluation index 
system for mining ecological efficiency, enabling the 
assessment of mining benefits and environmental 
impacts. The resulting system also aids in identifying 

Fig. 1. Research framework for the study.
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measures for enterprises and governments to foster 
sustainable development in mining activities. Refer to 
Table 1 for specific details on the index system.

Concerning the input index, we considered the 
number of mining enterprises, mining employees, 
annual mine treatment input, and occupied land area in 
each province. The number of mining enterprises and 
employees signifies the scale of mining activities and 
employment conditions [36]. Annual mine governance 
input reflects the environmental investment by mining 
enterprises, covering funds for mine environment 
restoration and governance, sourced from central and 
local finances, mining enterprises’ investments, and 
private funding [24]. Land occupation area mirrors the 
use of land resources by mines and serves as a control 
on mining development intensity [37].

In terms of expected outputs, our focus lies 
on the rehabilitation and treatment of the mine’s 
geological environment, total industrial output value, 
comprehensive utilization value of mining, and the 
proportion of clean energy. The restoration and treatment 
area in the mine’s geological environment indicates 
the effectiveness of mining enterprises in ecological 
preservation, covering activities like reclamation, 
ground collapse control, forest and grass restoration, 
and construction-ready zones [38]. The total industrial 
output value showcases the economic contribution of 
mining activities, representing the economic output of 
mineral resources, along with inputs like the number of 
mining enterprises and employees. The comprehensive 
utilization value of the mining industry reflects the 
efficient use of mineral resources, encompassing the 
total value of final industrial products resulting from 
symbiotic and associated minerals, and the management 
of “the three wastes” in the total output value [39]. The 
proportion of clean energy reveals the performance of 
mining enterprises in terms of energy consumption and 
environmental protection.

In addition, for evaluating the mining eco-efficiency, 
undesirable output indicators are also taken into account, 
such as carbon emissions due to mining activities, and 
the number of illegal investigations and mining cases. 
The carbon emissions due to mining reflect the impact 
of mining activities on climate change, while the number 
of illegal investigations and mining cases reflects the 
degree of compliance of the mining enterprises with the 
laws and regulations [40].

Data Collection

Considering the intensity and extent of mining 
activities in each province of China, we collected 
data from 27 provinces, autonomous regions, and 
municipalities directly under the central government 
of China, except for Beijing, Tianjin, Shanghai, Tibet, 
Hong Kong, Macao, and Taiwan, during the period 
2008 to 2018. To ensure the reliability and accuracy of 
the data, we obtained the data pertaining to indicators 
from several authoritative institutions, the China 
Environmental Statistics Yearbook, the China Land 
Resources Statistical Yearbook, the China Energy 
Statistics Yearbook, and the China Industrial Statistics 
Yearbook, among others. Additionally, to guarantee 
that the data was complete and reliable, the statistics 
related to carbon emissions from the mining industry 
were gathered from the CEADS database. During data 
processing, some missing values and outliers were 
corrected by the linear interpolation method, and intra-
group mean method, to ensure precision and accuracy 
of the data. Finally, the sample data for this study was 
selected, which provided a solid basis for the assessment 
of mining eco-efficiency.

Table 1. Ming eco-efficiency assessment index system.

Category Primacy index Secondary index Unit Indicator code

Inputs Input
Indicators

Number of mining enterprises A X1

practitioner A X 2

Occupied land area 1000 square meters X3

Mine environmental restoration management input 10 thousand yuan X4

Outputs

Desired 
Output Indicators

Mine geological environment restoration treatment 
area 1000 square meters y1

Comprehensive utilization output 10 thousand yuan y2

Industrial output 10 thousand yuan y3

Clean energy ratio % y4

Undesirable 
Outputs

Number of cases filed for exploration and mining 
violations Piece y5

Carbon Emissions from Mining 100000 tons y6
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Malmquist-Luenberger Productivity Index

The measurement of mining eco-efficiency requires 
not only static analysis of the non-desired output 
models but also dynamic analysis of the productivity 
indices; additionally, the Malmquist-Luenberger (ML) 
productivity index is one of the indices proposed by 
Malmquist specifically for measuring the dynamic 
efficiency [34, 37]. The non-desired output indicators 
such as the number of exploration and development 
violation cases, and mining carbon emissions were 
included for determining the mining eco-efficiency 
in the 27 Chinese provinces; hence, it was considered 
appropriate to use the ML productivity index to assess 
the changes in the mining eco-efficiency of the Chinese 
provinces. The concept of inter-period dynamics was 
introduced to construct the ML index based on the SBM 
directional distance function of non-desired output in 
period t and period t+1, and the ML index model of 
mining eco-efficiency was expressed as follows:
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For calculating the ML index, Et(xt, yt, st) and Et(xt+1, 
yt+1, st+1), were considered as evaluation units for periods 
t and t + 1, respectively, and The ML index can be 
divided into the technical efficiency variation index (EC) 
and the technological progress variation index (TC) 
based on the predicted output of the technical efficiency 
value, and these two components can be written as 
follows:

Methodology

Undesirable SBM-DEA Model

Data Envelopment Analysis (DEA) is an important 
frontier method for assessing eco-efficiency. Chen et 
al. (2022) constructed the SBM -DEA of undesirable 
output to deal with waste in output indicators, so as 
to reduce pollution emissions in mining ecology [28]. 
The SBM-DEA method is a non-radial directional 
distance function that allows the unwanted outputs  
to cause variance in the output at a different rate 
than the desired output [29]. Therefore, The SBM-
DEA model was introduced to evaluate the ecological 
benefits of the mining industry in China provinces.  
It was assumed that there were n decision- making units 
DMUj( j = 1, 2, ..., n) in determining the mining eco-
efficiency, the number of inputs for DMUj were p, and 
the number of output s yj(y1j, y2j, ..., yqj) were equal to q. 
The relaxation variable s+, and the residual variable s–, 
were introduced to construct the mining eco-efficiency 
evaluation model, which is illustrated below:
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In order to facilitate the calculation of the non-
expected output, on the basis of equation (1), the 
elements of non-expected output, namely s1 and s2, were 
used to indicate the number of expected output and 
non-expected output indicators, respectively, and sg and 
sb represented the expected output and non-expected 
output residual variables, respectively, for constructing 
the SBM model of non-expected output based on 
constant returns to scale, which is illustrated below:
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The technical progress index can be described by the 
following expression:
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If the TC value is greater than 1, it means the frontier 
moves forward; if it is less than 1, it means that the 
frontier moves backward; and the moving forward of the 
frontier represents technical progress.

The quantitative relationship among the ML index, 
technical efficiency change index, and technological 
progress change index can be expressed as:

 
1 1 1( , , , , , )t t t t t tM CxL y s Tx y s EC+ + + = ×

 (6)

Efficiency is rising if the ML index value is more 
than 1, reducing if the ML index value is less than 1, and 
remains stable if the ML index value is equal to 1.

Results & Discussion

Results of Changes in Mining  
Eco-Efficiency by Province

Results of Regional Differences in Eco-
Efficiency of the Mining Industry

For a precise evaluation of non-expected output’s 
influence on the eco-efficiency of China’s mining 
industry across provinces and cities, two efficiency 
values from the Charnes Cooper Rhodes (CCR) model 
were separately calculated. These values were compared 
with and without considering non-expected output in 
the SBM model, as outlined in Table 2. Notably, the 
mean mining eco-efficiency, considering non-expected 
output, was 0.75 (2008-2018), a 0.12 decrease from the 
CCR model’s mean efficiency without considering non-
expected output (0.87). This emphasizes the significant 
impact of illegal cases in exploration, mining, and 
carbon emissions on China’s overall green mining 
growth. In regions like North, East, Southwest, and 
Northwest China, the average efficiency values remained 
above 0.8 even after accounting for non-expected 
output, indicating lesser impact from strict controls on 
illegal cases and carbon emissions. However, Northeast 
and Central China experienced a substantial efficiency 
decrease – from 0.68 and 0.77 before considering non-
expected output to 0.47 and 0.51 after, a decline of 0.21 

and 0.26. This highlights the substantial impact of non-
expected output on green mining development in these 
regions.

Using panel data to assess mining eco-efficiency in 
China (2008-2018), we selected non-expected output 
SBM models with constant payoff of scale (CRS)  
and variable payoff of scale (VRS), employing  
non-radial distance functions. The two non-expected 
outputs 0 the number of exploration and mining 
violation cases filed and mining carbon emissions – 
were introduced to calculate technical efficiency (TE) 
and pure technical efficiency (PTE). The results are 
shown in Table 3.

Table 3 reveals that when considering undesired 
output, the average TE of mining ecological efficiency 
is 0.75, indicating a low overall level with varying 
states each year. Regionally, North, East, Southwest, 
and Northwest China exhibit comprehensive TE values 
above 0.8, while Northeast and Central China have 
relatively low TE. Specifically, Northeast China’s 
comprehensive technical efficiency is only 0.47 
after accounting for unlawful cases and decreased 
carbon emissions compared to the national average. 
Additionally, considering non-desired outputs, the 
mean value of pure technical efficiency in mining eco-
efficiency is 0.84, suggesting a high overall level with 
non-cyclical variation, consistent with Zhang et al.’s 
findings (2020) [41]. Regionally, East and Southwest 
China exhibit pure technical efficiency above 0.90, 
indicating a positive development despite illegal cases 
and fewer carbon emissions. However, Northeast and 
Central China have lower pure technical efficiency 
values (0.56 and 0.69, respectively) compared to values 
without considering non-desired outputs, significantly 
decreasing output.

Results of Regional Spatial Characteristics 
of Mining Eco-Efficiency

Derived from the SBM model’s comprehensive 
technical efficiency (CTE) dimension, considering non-
desired outputs (Fig. 2), notable challenges in mining 
eco-efficiency development emerged in Northeast and 
Central China from 2008 to 2018. Specifically, both 
regions exhibited significantly lower total technical 
efficiency compared to others, factoring in variables 
like exploration and mining violation cases and mining 
carbon emissions. The difference in comprehensive 
technical efficiency values was apparent. Notably, 
Central China experienced a consistent decline 
throughout the study period. Although its comprehensive 
technical efficiency surpassed Northeast China in 2008-
2009, it gradually equaled Northeast China’s efficiency 
in subsequent years. This trend persisted despite other 
regions maintaining a relatively stable level of green 
mining growth, unaffected by the adverse impact of 
illegal exploration and mining cases and excessive 
carbon emissions. This aligns with findings by Wang et 
al. (2019a) [42].
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Importantly, inefficiencies in green mining 
development in Northeast and Central China are not 
attributed to technical or resource shortcomings but 
rather stem from significant issues related to exploration 

and mining violations and carbon emissions. Hence, 
enhancing management and supervision in these areas 
is crucial for improving the overall comprehensive 
technical efficiency of green mining development.

Table 2. Eco-efficiency of the mining industry based on the CCR model and SBM model for Chinese provinces during 2008-2018.

Region
2008 2010 2012 2014 2016 2018 Average

CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM CCR SBM

Hebei 0.82 0.50 1.00 1.00 0.86 0.40 1.00 1.00 0.70 0.31 0.57 0.34 0.82 0.58

Inner Mongolia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Shanxi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

North China 0.94 0.83 1.00 1.00 0.95 0.80 1.00 1.00 0.90 0.77 0.86 0.78 0.94 0.86

Heilongjiang 0.60 0.29 0.46 0.23 0.47 0.28 0.46 0.28 0.70 0.38 0.56 0.33 0.55 0.30

Jilin 0.76 0.53 0.70 0.39 0.71 0.40 0.86 0.62 1.00 1.00 0.67 0.43 0.76 0.56

Liaoning 0.74 0.49 0.77 0.42 0.62 0.40 0.64 0.48 0.67 1.00 0.69 0.58 0.72 0.54

North East China 0.70 0.44 0.64 0.34 0.60 0.36 0.65 0.46 0.79 0.79 0.64 0.44 0.68 0.47

Anhui 0.84 1.00 0.91 1.00 0.77 0.43 0.99 1.00 0.89 0.59 1.00 1.00 0.87 0.86

Fujian 0.91 0.69 0.77 0.52 0.87 0.64 1.00 1.00 0.98 1.00 0.98 0.65 0.92 0.77

Jiangsu 0.72 1.00 0.77 0.60 0.70 0.50 0.81 1.00 0.79 0.54 0.98 0.64 0.78 0.76

Jiangxi 0.74 0.53 1.00 1.00 1.00 1.00 1.00 1.00 0.77 0.49 0.85 0.57 0.87 0.75

Shandong 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.81 0.42 0.98 0.90

Zhejiang 0.88 0.60 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.98 1.00 0.97 0.92

East China 0.85 0.80 0.91 0.85 0.89 0.76 0.96 1.00 0.90 0.77 0.93 0.71 0.90 0.83

Henan 1.00 1.00 0.80 0.52 0.82 0.50 0.90 0.64 0.85 0.47 0.54 0.35 0.85 0.60

Hubei 0.81 0.55 0.63 0.45 0.64 0.35 0.78 0.67 0.85 0.52 0.79 0.50 0.73 0.51

Hunan 0.75 0.48 0.71 0.34 0.60 0.31 0.77 0.40 0.80 0.49 0.75 0.47 0.73 0.43

Central China 0.85 0.68 0.71 0.44 0.69 0.39 0.82 0.57 0.83 0.50 0.69 0.44 0.77 0.51

Guangdong 1.00 1.00 0.81 0.55 0.81 0.52 0.94 0.65 0.96 0.79 0.79 0.46 0.89 0.69

Guangxi 0.80 0.61 0.70 0.56 0.69 0.53 0.83 1.00 0.82 0.58 0.74 0.52 0.78 0.64

Hainan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.71 0.99 0.97

South China 0.93 0.87 0.84 0.70 0.83 0.69 0.92 0.88 0.93 0.79 0.81 0.56 0.89 0.77

Guizhou 0.93 0.63 0.78 0.52 1.00 1.00 1.00 1.00 0.91 0.49 0.69 0.38 0.91 0.73

Sichuan 0.96 0.74 0.90 0.54 0.98 0.51 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.89

Yunnan 1.00 1.00 0.96 0.60 0.97 0.49 0.99 1.00 0.74 0.44 0.64 0.37 0.88 0.62

Chongqing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Southwest China 0.97 0.84 0.91 0.67 0.99 0.75 1.00 1.00 0.91 0.73 0.83 0.69 0.94 0.81

Gansu 1.00 1.00 0.67 0.64 0.68 0.49 0.70 0.53 1.00 1.00 0.70 0.50 0.84 0.75

Ningxia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Qinghai 0.96 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Shaanxi 0.98 1.00 1.00 1.00 1.00 0.51 0.96 0.57 1.00 1.00 1.00 1.00 0.98 0.87

Xinjiang 0.82 0.56 0.85 0.55 0.84 0.48 1.00 1.00 0.84 0.46 0.79 0.46 0.82 0.55

Northwest China 0.95 0.91 0.90 0.84 0.90 0.69 0.93 0.82 0.97 0.89 0.90 0.79 0.93 0.83

National Average 0.89 0.79 0.86 0.72 0.85 0.66 0.91 0.85 0.90 0.76 0.83 0.65 0.87 0.75
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Examining the pure technical efficiency dimension 
from the SBM model, considering non-desired outputs 
(Fig. 3), reveals distinctive patterns in the mining eco-
development process for Northeast and Central China 

from 2008 to 2018. Northeast China demonstrates a 
notable upward trend, albeit still significantly lower 
than other regions – a positive signal. Conversely, 
Central China’s pure technical efficiency in green 

Table 3. Technical efficiency (TE) and pure technical efficiency (PTE) considering undesirable output SBM model, 2008-2018.

Region
2008 2010 2012 2014 2016 2018 Average

TE PTE TE PTE TE PTE TE PTE TE PTE TE PTE TE PTE

Hebei 0.50 0.51 1.00 1.00 0.40 0.46 1.00 1.00 0.31 0.31 0.34 0.45 0.58 0.64

Inner Mongolia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Shanxi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

North China 0.83 0.84 1.00 1.00 0.80 0.82 1.00 1.00 0.77 0.77 0.78 0.82 0.86 0.88

Heilongjiang 0.29 0.31 0.23 0.23 0.28 0.29 0.28 0.28 0.38 0.40 0.33 1.00 0.30 0.43

Jilin 0.53 0.53 0.39 0.39 0.40 0.42 0.62 0.62 1.00 1.00 0.43 0.59 0.56 0.59

Liaoning 0.49 0.51 0.42 1.00 0.40 0.42 0.48 0.51 1.00 1.00 0.58 1.00 0.54 0.65

North East 0.44 0.45 0.34 0.54 0.36 0.38 0.46 0.47 0.79 0.80 0.44 0.86 0.47 0.56

Anhui 1.00 1.00 1.00 1.00 0.43 0.47 1.00 1.00 0.59 1.00 1.00 1.00 0.86 0.90

Fujian 0.69 1.00 0.52 1.00 0.64 1.00 1.00 1.00 1.00 1.00 0.65 1.00 0.77 1.00

Jiangsu 1.00 1.00 0.60 1.00 0.50 1.00 1.00 1.00 0.54 1.00 0.64 1.00 0.76 1.00

Jiangxi 0.53 0.53 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.56 0.57 1.00 0.75 0.80

Shandong 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.42 0.56 0.90 0.96

Zhejiang 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.96

East China 0.80 0.92 0.85 1.00 0.76 0.91 1.00 1.00 0.77 0.93 0.71 0.93 0.83 0.94

Henan 1.00 1.00 0.52 1.00 0.50 0.53 0.64 0.64 0.47 0.59 0.35 0.37 0.60 0.70

Hubei 0.55 1.00 0.45 1.00 0.35 0.38 0.67 1.00 0.52 1.00 0.50 1.00 0.51 0.87

Hunan 0.48 0.48 0.34 0.35 0.31 0.32 0.40 0.41 0.49 0.54 0.47 1.00 0.43 0.50

Central China 0.68 0.83 0.44 0.78 0.39 0.41 0.57 0.68 0.50 0.71 0.44 0.79 0.51 0.69

Guangdong 1.00 1.00 0.55 0.58 0.52 0.56 0.65 0.65 0.79 1.00 0.46 0.63 0.69 0.78

Guangxi 0.61 1.00 0.56 0.60 0.53 0.57 1.00 1.00 0.58 0.62 0.52 1.00 0.64 0.86

Hainan 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.71 1.00 0.97 1.00

South China 0.87 1.00 0.70 0.73 0.69 0.71 0.88 0.88 0.79 0.87 0.56 0.88 0.77 0.88

Guizhou 0.63 1.00 0.52 0.53 1.00 1.00 1.00 1.00 0.49 1.00 0.38 1.00 0.73 0.96

Sichuan 0.74 0.79 0.54 1.00 0.51 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 0.98

Yunnan 1.00 1.00 0.60 0.63 0.49 0.52 1.00 1.00 0.44 0.54 0.37 0.49 0.62 0.72

Chongqing 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Southwest Region 0.84 0.95 0.67 0.79 0.75 0.88 1.00 1.00 0.73 0.88 0.69 0.87 0.81 0.91

Gansu 1.00 1.00 0.64 1.00 0.49 0.49 0.53 0.53 1.00 1.00 0.50 0.73 0.75 0.89

Ningxia 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Qinghai 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Shaanxi 1.00 1.00 1.00 1.00 0.51 1.00 0.57 0.58 1.00 1.00 1.00 1.00 0.87 0.96

Xinjiang 0.56 0.58 0.55 0.56 0.48 0.50 1.00 1.00 0.46 0.47 0.46 0.49 0.55 0.56

Northwest China 0.91 0.92 0.84 0.91 0.69 0.80 0.82 0.82 0.89 0.89 0.79 0.84 0.83 0.88

National Average 0.79 0.86 0.72 0.85 0.66 0.74 0.85 0.86 0.76 0.85 0.65 0.86 0.75 0.84
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mining, accounting for exploration and mining violation 
cases and carbon emissions, exhibits a V-shaped trend, 
increasing from 2008 to 2013 but decreasing from 2014 
to 2018. Excluding Northeast and Central China, other 
regions maintain a pure technical efficiency exceeding 
0.8 during 2008-2018, indicating a relatively high level 
of pure technical efficiency and experience in achieving 
higher mining eco-efficiency.

Analyzing the pure technical efficiency level from 
the SBM model, considering non-expected output 
(Fig. 3), reveals that although Northeast China’s pure 
technological efficiency remains lower than other 
areas during 2008-2018, a clear increasing tendency 
is observed when accounting for exploration and 
mining violation cases and mining carbon emissions. 
In contrast, Central China displays a V-shaped trend 
in pure technical efficiency, while the remaining 
regions consistently maintain a level above 0.8. To 
enhance the pure technical efficiency of mining 

ecological development, regions should invest more, 
improve technological innovation management, 
optimize resource utilization, strengthen environmental 
governance, and enhance policy enforcement and 
regulations on mining carbon emissions to reduce 
negative impacts and elevate the level of pure technical 
efficiency in mining ecological development.

Analyzing the quadrants of the CCR model efficiency 
values and SBM model efficiency values (Fig. 4) unveils 
the influence of illegal exploration and mining cases 
and mining carbon emissions on the mining industry’s 
ecological development level. Northeast and Central 
China are positioned in the third quadrant, indicating 
a low level of green mining development in these 
regions, regardless of considering the impact of mining 
violations and carbon emissions. Although Northeast 
China shows an upward trend in pure technical 
efficiency after considering these factors, the overall 
level remains modest. Conversely, North, Northwest, 

Fig. 2. Trends in the combined technical efficiency (TE) considering the non-expected output SBM model.

Fig. 3. Trends in pure technical efficiency(PTE)considering the non-expected output SBM model.
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Southwest, East, and South China are located in the 
first quadrant, signifying a high level of ecological 
development in mining across these regions, regardless 
of the aforementioned factors.

Further analysis reveals that North China and 
Southwest China exhibit higher levels of total ecological 
development in mining when considering the impact 
of illegal exploration and mining cases and mining 
carbon emissions. Meanwhile, East and Northwest 
China perform well in green mining development 
without considering these factors. The overall level in 
South China approaches the national average, regardless 
of considering these factors or not. In conclusion, the 
impact of mining violations and carbon emissions varies 
significantly across regions in the development stages 
of green mining. Northeast and Central China need to 
enhance control measures and management of these 
factors to improve their mining ecological development 
levels. In other regions, promoting green mining 
development and advancing efficiency and technology 
levels is essential for achieving sustainable development.

Analysis of Malmquist-Luenberger 
Index Change Results

Results of the Temporal Characteristics  
of the ML Index of Mining Eco-Efficiency

The outcomes presented in Table 4 and Fig. 5 
suggest that mining eco-efficiency development has 
generally been sustained. While significant fluctuations 
occurred during 2008-2009 and 2016-2018, the ML 
productivity index for mining eco-efficiency remained 
within a fluctuation range of about 1.1. The average ML 
productivity index value for the 27 provinces, cities, 
and autonomous regions during 2008-2018 was 1.0924, 
indicating an average increase of 9.24%. Among these, 
the technical efficiency index exhibited a mean change 
of 1.0334, with an average increase of 3.34%, while 
the technical progress efficiency index had a mean 

change of 1.1042, with an average increase of 10.42%. 
Therefore, it’s evident that the ML productivity index 
for mining eco-efficiency in China from 2008 to 2018 
was influenced by both combined technical efficiency 
and the technical progress index. However, the change 
in the technical progress index had a more substantial 
impact on mining eco-efficiency, aligning with the 
findings of Qiu et al. (2021) [43].

A significant improvement in mining eco-efficiency 
was noted during 2008-2009 and 2017-2018, with ML 
index values at 1.2167 and 1.2148, respectively, marking 
a 21.67% and 21.48% increase compared to previous 
years. However, the ML indices for 2009-2010 and  
2015-2016 were 0.9381 and 0.9762, respectively, 
indicating a contraction in China’s overall green mining 
development between 2010 and 2016. The composite 
technical efficiency index showed a decreasing trend 
for half of the time during 2010-2016. Although 
the overall situation improved, the change in the 
integrated technological efficiency was only 0.8714. 
Notably, during 2017-2018, the technical advancement 
index mean reached 1.4148, emphasizing the need to 
significantly enhance mining industry eco-efficiency 
in terms of business management and production scale 
optimization.

Results of the Spatial Characterization  
of the ML Index of Mining Eco-Efficiency

As per Table 5, the eco-efficiency of China’s major 
mining regions consistently exceeds 1, signifying 
overall improvement in the green mining sector 
across administrative regions. Notably, East China 
demonstrated the most significant enhancement in 
mining eco-efficiency from 2008 to 2018, with an 
average annual increase of 15.82%, as reflected in 
its MML total factor productivity indicator reaching 
1.1582. From 2008 to 2018, East China experienced 
continuous improvement in mining eco-efficiency due 
to technological progress and equipment introduction. 

Fig. 4. Regional CCR model efficiency values and SBM model efficiency values quadrant diagram.
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However, both production scale and human management 
still offer untapped potential.

Table 5 results indicate that the ML total factor 
productivity index of mining eco-efficiency in each 
Chinese province generally ranged between 1.0 and 1.1. 
Notably, the Anhui and Jiangsu provinces exhibited the 
most substantial changes, with both the ML TFP and 
technical progress index hovering around 1.3, while 
comprehensive technical efficiency changes remained 
around 1.1. Conversely, in Jiangxi, Zhejiang, and other 
provinces, the change in overall technical efficiency 
increased dramatically compared to the change in 
technical advancement. This suggests that the efficiency 
improvement in Anhui and Jiangsu was predominantly 
influenced by changes in the technical progress index, 
whereas in Jiangxi and Zhejiang, comprehensive 
technical efficiency played a more significant role  
in driving eco-development efficiency.

Analysis of the Overall Difference Results  
of Mining Eco-Efficiency

From the perspective of total factor productivity 
(Fig. 6), the ML productivity index of mining ecology 
fluctuates considerably in different regions. Except for 
2010, the ML total factor productivity index was higher 
than 1 in all the years and has remained relatively 
stable, indicating that the level of development of 
mining ecology is improving steadily. The total factor 
productivity varies significantly across different 
locations as well, and the trend varies from place to 
place. For example, the overall mining ecosystem factor 
productivity in North China reached 1.45 in 2009, but 
declined continuously during 2010 and 2011, with the 
total factor productivity below 1. However, after 2011, 
the total factor productivity gradually increased again, 
indicated by a “W-shaped” curve representing the 
overall trend. The total factor productivity of mining 

Fig. 5. ML index and its decomposition in China for the period 2010-2018.

Table 4. China’s green mining development ML index and its decomposition from 2008 to 2018.

YEAR ML EC TC

2008-2009 1.2167 0.9909 1.2257

2009-2010 0.9381 0.9561 1.0198

2010-2011 1.0813 1.1289 0.9692

2011-2012 1.1037 0.8906 1.2954

2012-2013 1.0988 1.3102 0.8589

2013-2014 1.0386 1.1363 0.9207

2014-2015 1.1084 0.8687 1.3445

2015-2016 0.9762 1.1515 0.8727

2016-2017 1.1472 1.0293 1.1202

2017-2018 1.2148 0.8714 1.4148

AVERAGE 1.0924 1.0334 1.1042
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ecology in Northeast China remained around 1 from 
2009 to 2014, indicating that there was not much change 
in the development of mining ecology. However, during 
(2015-2016), its total factor productivity increased 
significantly, reaching 1.29 and 1.38, respectively, which 

means that the mining eco-efficiency increased by 29% 
and 38%, respectively, during these two years. This is 
the main reason why the non-expectation SBM model 
for the central and northeastern regions, described in 
the previous section, improved significantly in the latter 

Table 5. Mining eco-development ML index and its decomposition by regions in China 2010-2018.

Region ML EC TC

Hebei 1.0634 1.1046 1.0974

Inner Mongolia 1.0521 1.0000 1.0521

Shanxi 1.1059 1.0000 1.1059

North China 1.0738 1.0349 1.0851

Heilongjiang 1.0552 1.0233 1.0434

Jilin 1.0727 1.0501 1.0645

Liaoning 1.1206 1.0593 1.1248

North East 1.0828 1.0442 1.0776

Anhui 1.2702 1.1213 1.3403

Fujian 1.0481 1.0336 1.0768

Jiangsu 1.1938 1.0506 1.2783

Jiangxi 1.2684 1.2048 1.0739

Shandong 1.0673 0.9329 1.1693

Zhejiang 1.1014 1.0784 1.0316

East China 1.1582 1.0703 1.1617

Henan 1.0256 0.9292 1.1389

Hubei 1.1522 1.0326 1.1636

Hunan 1.1466 1.0370 1.1413

Central China 1.1081 0.9996 1.1479

Guangdong 1.0184 0.9705 1.0737

Guangxi 1.0621 1.0262 1.0692

Hainan 0.9892 0.9709 1.0296

South China 1.0233 0.9892 1.0575

Guizhou 1.1014 0.9998 1.1203

Sichuan 1.1227 1.1213 1.0254

Yunnan 0.9367 0.9644 1.0168

Chongqing 1.0616 1.0000 1.0616

Southwest Region 1.0556 1.0214 1.0561

Gansu 1.1541 1.0322 1.1783

Ningxia 1.0084 1.0000 1.0084

Qinghai 1.0264 1.0000 1.0264

Shaanxi 1.1576 1.0975 1.2112

Xinjiang 1.1126 1.0610 1.0903

Northwest China 1.0918 1.0382 1.1029

National Average 1.0924 1.0334 1.1042
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years and was essentially at par with the rest of the 
country.

In terms of the variation of comprehensive technical 
efficiency, the variation value of comprehensive 
technical efficiency in all regions is basically around 
1, and the overall trend is basically the same (Fig. 7). 
These changes show an up-and-down trend, with peaks 
in 2011, 2013 and 2016, and troughs in 2010, 2012 
and 2015. It is noteworthy that the performance of the 
northeast region was the most significant in 2016, with 
a value of 1.75 for the change in its combined technical 
efficiency, which is one of the main reasons why the 
northeast reached a total factor productivity of 1.38 in 
2016 in the green mining sector. However, in 2017, the 
Northeast region once more had the lowest value of the 
change in integrated technical efficiency, which was 
0.76. This might have attributed to the northeast region’s 
ML TFP index of only 0.87 in 2017.

As far as the changes in the technological progress 
index are concerned, a consistent trend was observed 

across regions, similar to that of the overall technical 
efficiency, showing the form of up and down. However, 
the volatility of the technology progress index showed 
a more obvious consistency and peaked in 2009, 2012, 
2015 and 2018 respectively (Fig. 8), which reflected 
the small differences in technological progress 
among different regions, indicating that technological 
improvement and communication played an important 
role. It can be seen from the fluctuation of the technical 
progress index that the technological improvement of 
China’s green mining industry is not smooth sailing, 
but needs constant exploration and efforts. Although the 
trend of technological progress is upward, technological 
change and innovation are also influenced by the 
upgrading of industrial structure, government policy 
support and other aspects [44]. Therefore, the regions 
need to continuously strengthen their communication, 
and cooperation for technological innovation and 
progress, to facilitate sustainable development of green 
mining in China [45, 46].

Fig. 6. Trends in total factor productivity by region in China.

Fig. 7. Trends in the change in integrated technical efficiency(EC) by region in China.
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Utilizing the ML total factor productivity index 
model to decompose changes in comprehensive technical 
efficiency and technological progress, a quadrant 
diagram (Fig. 9) illustrates the technical performance 
of the seven regions in green mining development. 
East China stands out in the first quadrant, showcasing 
excellent technical development and efficiency. Central 
China is positioned in the second quadrant, displaying 
noticeable improvements in technological progress but 
still leaving room for enhancing comprehensive technical 
efficiency. South and Southwest China fall in the third 
quadrant, indicating the need for further improvement 
despite having a higher technological advancement 
index. North, Northeast, and Northwest China reside 
in the fourth quadrant, suggesting slower technological 
progress but better comprehensive technical efficiency, 
highlighting untapped potential. The quadrant 
distribution reveals the strengths and weaknesses 
of different regions in green mining technology 
development, offering valuable insights. For instance, 

East China’s success in technological innovation and 
production efficiency serves as a valuable model for 
other regions [47]. Simultaneously, the northern region, 
while experiencing slower technological progress, 
demonstrates promising comprehensive technological 
efficiency, providing an opportunity for improvement 
through technology adoption.

Conclusions

Conclusions and Recommendations

The assessment of mining eco-efficiency is 
necessary to achieve sustainable development goals. 
The development of mining industry leads to the 
generation of large amounts of wastewater, exhaust gas 
and solid waste, which are likely to cause uncontrollable 
damage, and pollution to the environment. For effective 
assessment of the mining eco-efficiency of the Chinese 

Fig. 8. Trends in regional technological progress index change (TC).

Fig. 9. Regional quadrant of the value of change in integrated technical efficiency and the value of change in technical progress.
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provinces, this study provides a novel mining eco-
efficiency assessment framework, which integrates 
the non-expected output SBM-DEA and Malmquist-
Luenberger total factor productivity index models, 
in order to encourage the green development of the 
mining sector, to assess the mining eco-efficiency of 
27 Chinese provinces and investigate the evolutionary 
characteristics of mining eco-efficiency in various 
locations.

Key findings of this study include: (1) The overall 
trend in the mining eco-efficiency of Chinese provinces 
is positive, but notable spatial disparities exist. (2) 
East China displays superior technical progress and 
comprehensive technical efficiency, while North, 
Northeast, and Northwest China lag in technical 
progress but excel in comprehensive technical efficiency. 
(3) Results from the non-expected output SBM model 
and Malmquist-Luenberger total factor productivity 
index indicate that non-desired outputs, such as 
exploration and mining violation cases and mining 
carbon emissions, notably influence China’s overall 
green mining development, particularly in Northeast 
and Central China. (4) Future challenges in China’s 
green mining development include addressing issues 
like improving economies of scale, enhancing the level 
of green mining development, restoring environmental 
systems in mining areas, and advancing energy 
conservation and emission reduction efforts.

To sum up, improvement in the level of eco-
efficiency of China’s mining industry, and promotion 
of the development of green mining can be achieved 
in the following ways: (1) To urge enterprises to fulfill 
their responsibilities for environmental restoration in 
mines. Formulation of relevant policies for promoting 
the systematic treatment and restoration of the ecological 
and geological environment in mines, in addition 
to the adoption of specific measures to prevent soil 
erosion, restore vegetation, and reclaim land in mines, 
is required. (2) The ability to achieve green technology 
innovation should be developed. The government should 
encourage mines to invest more, make efforts to achieve 
technological innovation through the introduction 
of technologies, and thus facilitate comprehensive 
utilization of resources, reduce the emission of waste 
rocks, waste gas, and wastewater, reduce energy 
consumption and carbon emissions; (3) The development 
of green mines should be strengthened. The government 
can accelerate the establishment of green mines through 
the implementation of relevant policies and by providing 
support and promoting the creation of demonstration 
zones for green mining development from “point to 
surface”, so as to facilitate the development of green 
mining on a large scale.

Outlook

In conclusion, our study introduces a robust and 
comprehensive framework to assess the ecological 

efficiency of the mining industry. This framework offers 
fresh perspectives for green mining development and 
serves as a valuable reference for government planning 
decisions. Meanwhile, the results of this study can 
provide some lessons for green mining development in 
developing countries. Nevertheless, further discussions 
are needed on two fronts: firstly, achieving efficient 
development of mining ecological efficiency amidst 
changing scales, and secondly, understanding the impact 
of regional innovation differences on the evolution of 
mining eco-efficiency.
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