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Abstract

The expansion of built-up areas has a significant impact on the spatial distribution of land use 
within a given region. The accurate identification of appropriate regions for the expansion of built-
up land holds significant importance in shaping the future distribution of land use patterns. Using 
Sanmenxia City in Henan Province as a case study, this analysis focuses on obstacle factors such as the 
suitability of land resources, ecological service value, and ecological security. A built-up land expansion 
suitability evaluation index system was developed, and the weights were determined using entropy gray 
correlation analysis. We employed the weighted average comprehensive index model to examine the 
attributes associated with the suitability of built-up land expansion within the designated study region. 
Subsequently, the PLUS model was employed to simulate the prospective land utilization within the 
study area, with the suitability of built-up land expansion as a constraint. The findings of this study will 
serve as a fundamental framework for informing decision-making processes pertaining to land space 
planning, ecological construction, and urban development in Sanmenxia City.
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Introduction

The expansion of built-up land has become a 
significant component of land use change due to 
population growth and socio-economic development 
[1]. Nevertheless, this transition has also given rise 
to a myriad of issues, including ecological and 
environmental damages, heightened land incongruity, 
supplementary land allocation for construction purposes, 

and the degradation and contamination of land [2]. The 
extensive and haphazard expansion of built-up land has 
resulted in suboptimal land utilization [3]. Therefore, 
strategic land expansion holds significant importance 
for promoting efficient land use in the region and for the 
spatial planning of the entire nation [4].

The assessment of the suitability of expanding built-
up land involves a thorough evaluation that considers 
the natural, social, and economic factors of the city. This 
evaluation is conducted in accordance with ecological 
protection and construction requirements [5]. Its 
purpose is to determine the optimal direction for future 
expansion of built-up land. The selection of indicators 
and the determination of weights are crucial steps in 
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assessing the suitability of built-up land expansion [6]. In 
previous research, indicators have predominantly been 
chosen from the realms of the natural environment and 
socio-economic circumstances. The inclusion of multiple 
criteria with varying weights in the evaluation process 
introduces complexity to the assessment procedure. 
Various methods can be employed to determine weights, 
such as factor analysis [7, 8], principal component 
analysis [9], Analytic Hierarchy Process (AHP) [10, 11], 
entropy method [12, 13], and gray correlation analysis 
[14, 15]. The Analytic Hierarchy Process (AHP) is 
widely acknowledged as a highly effective approach for 
multi-criteria decision-making. It utilizes a hierarchical 
structure to depict the relative significance of factors 
and the relationships within a multi-criteria decision-
making framework [16]. Nevertheless, this approach is 
hindered by its incapacity to address the undisclosed 
certainty inherent in the decision-making procedure, 
resulting in imprecise outcomes. The proposed method, 
known as the entropy method-gray correlation analysis 
method, offers a more objective approach to calculating 
assigned weights. This is achieved by substituting the 
subjective results obtained from the entropy method 
with the traditional approach of utilizing the value of the 
discriminant coefficient in gray correlation analysis.

Several established dynamic models have been 
developed in the field of future land use simulation. 
These models include logistic regression [17], Markov 
[9, 10], meta-cellular automata (CA) [18-20], conversion 
of land use and its effects (CLUE) [21-23], the Future 
Land Use Simulation (FLUS) model [24, 25], and the 
Patch Generated Land Use Simulation (PLUS) model 
[26-29]. The utilization of cellular automaton (CA) 
models has yielded favorable outcomes in urban area 
modeling in both local and cross-national investigations. 
In a study conducted by Li et al. [30], the authors 
employed a combination of the MCR model and the CA-
Markov model to simulate the projected growth of the 
Wuhan metropolitan area. Their findings indicate that 
the MCR-modified CA-Markov model holds promise 
for facilitating environmentally sustainable urban 
expansion. In their study, Sai Hu et al. [31] employed 
the gray early warning GM(1,1) model and FLUS 
model to simulate the anticipated characteristics of 
land use change in Anhui Province under an ecological 
optimization scenario. The PLUS model was initially 
proposed by Xun Liang et al. [32]. This model combines 
a land expansion analysis strategy with a cellular 
automaton (CA) model that utilizes various types of 
stochastic patch seeds. It has the capability to simulate 
the generation and evolution of multiple types of land 
patches in a spatio-temporal and dynamic manner. 
Furthermore, the model can uncover the underlying 
mechanisms of land use change during the simulation 
process.

This study focuses on Sanmenxia City as the subject 
of investigation and assesses the suitability of built-up 
land expansion by considering constraints related to 
obstacle factors, drawing upon existing research. The 

extraction of obstacles to built-up land expansion was 
conducted based on the natural geography of the study 
area and the requirements of built-up land development. 
These obstacles were then categorized into three groups: 
obstacles related to land resource suitability, obstacles 
related to ecological service value, and obstacles 
related to ecological security. The entropy value-gray 
correlation method is employed to determine the weight 
of each index for assessing the suitability of expanding 
built-up land. This allows for the identification of 
suitable areas for built-up land expansion. Subsequently, 
the PLUS model is utilized to simulate the prospective 
land use spatial pattern, taking into account the 
suitability of expanding built-up land. The findings of 
this study will serve as a fundamental framework for 
informing decision-making processes pertaining to 
land space planning, ecological construction, and urban 
development in Sanmenxia City.

Overview of the Study Area and Data Sources

Overview of the Study Area

Sanmenxia City is situated in the western region 
of Henan Province, at the confluence of Henan, Jin, 
and Shaanxi Provinces. It is positioned between the 
latitudes of 33°31′24″~35°05′48″N and longitudes 
of 110°21′42″~112°01′24″E (Fig. 1). The region’s 
topography is characterized by a prevalence of 
mountains, hills, and the Sichuan Plateau. It spans a 
land area of 9936.65 km2, with 5421 km2 designated 
as mountainous area, 3250 km2 as hilly terrain, and 
965 km2 as plains. The area falls within a semi-arid 
climate, specifically the warm-temperate continental 
monsoon climate. The average annual temperature is 
recorded at 14.2℃, and the region typically experiences 
annual rainfall ranging from 400-700 mm. By the year 
2021, it is projected that the overall population of the 
city will reach 2038 thousand individuals. Among this 
population, approximately 1182.7 thousand individuals 
are expected to reside in urban areas, while the 
remaining 855.3 thousand individuals are anticipated to 
reside in rural areas. Consequently, the urbanization rate 
of the resident population is estimated to be 58.03%. The 
gross domestic product (GDP) of the city amounted to 
$158.254 billion. The cultivated land area for grain in the 
city measures 163.93 thousand hm2. The wheat planting 
area encompasses 75.17 thousand hm2, while the corn 
planting area spans 60.27 thousand hm2. Additionally, 
the oilseed planting area covers 13.35 thousand hm2, and 
the vegetable planting area extends to 32.85 thousand 
hm2. The urban area exhibits a combined yearly grain 
yield of 730.6 thousand tons, comprising 359.7 thousand 
tons of summer grain, 370.9 thousand tons of autumn 
grain, and 40.1 thousand tons of roasted tobacco. The 
oilseed production amounted to 38.1 thousand tons. The 
combined production of vegetables and edible fungi 
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amounts to 1,271,700 tons. The total production of 
garden fruits amounted to 2682.7 thousand tons.

Data Sources

The dataset used in this study consists of the 
evaluation indicator system dataset and the driver 
dataset. The primary datasets encompass land use/land 
cover data, digital elevation models, meteorological data, 
and socio-economic data. (1) Raster images of land use 
in 2010 and 2020 based on the LUCC system reclassified 

into six categories: cropland, forest land, grass, 
watershed, built-up land and bare land were provided by 
the Center for Resource and Environmental Science and 
Data of the Chinese Academy of Sciences (CRESD); (2) 
National Aeronautics and Space Administration (NASA) 
provided 30M resolution digital elevation data and 
indirectly slope and aspect data; (3) data on railroads and 
highways was obtained from the National Geographic 
Information Resources Catalog Service System data; 
(4) National meteorological science data sharing service 
platform provided precipitation and temperature data; 

Fig. 1. Geographical location of the study area.

Data type Data name Year Source

Raster data

Land use data 2000/2010/2020 https://www.resdc.cn/

Digital elevation data 2020 https://urs.earthdata.nasa.gov/

GDP 2019 https://www.resdc.cn/

Population density data 2020 https://hub.worldpop.org/

Meteorological data 2020 http://data.cma.cn/

Vector data
Road data 2020 https://www.webmap.cn/

Water system data 2020 https://data.casearth.cn/

Land use 
planning data

Sanmenxia City Land Use 
Master Plan 2000-2020 Sanmenxia Municipal People's Government website, 

Natural Resources and Planning Bureau website
Sanmenxia City Master Plan 2013-2030

Socio-economic 
data

Sanmenxia Statistical 
Yearbook

2000-2020
Statistical Yearbook Sharing Platform

Sanmenxia Statistical 
Bulletin Sanmenxia Municipal Government Portal

China Agricultural Products 
Price Survey Yearbook 2020 China Agricultural Products Price Survey Yearbook

Table 1. Source of data for the study area.
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(5) The Center for Resource and Environmental Sciences 
and Data of the Chinese Academy of Sciences (CRESD) 
provided 2019 GDP data in lieu of 2020 data; (6) The 
2000-2020 Statistical Yearbook were used to elivit the 
data on energy consumption and agricultural resources 
in Sanmenxia City for the corresponding years; (7) 
Population data were obtained from the Open Space 
Population Data (WorldPop). Please refer to Table 1 for 
further information.

Research Methodology

Evaluation of Suitability for Spatial 
Expansion of Built-Up Land

The adaptability evaluation of built-up land refers to 
the process of establishing a scientific and reasonable 
evaluation system based on the natural, economic, 
social, and policy conditions of construction land, 
using scientific methods to determine the most suitable 

planning use of a certain area or a certain plot of 
construction land.

Establishment of the Evaluation Indicator System

The prevailing body of research primarily focuses on 
investigating the factors that contribute to the expansion 
of built-up land, with particular emphasis on the natural 
environment and socio-economic data. The examination 
of obstacle factors associated with the driving force 
theory pertains to the analysis of factors that hinder the 
expansion of urban built-up land from an alternative 
standpoint. This entails investigating the factors that 
exert an obstructive influence on the development of a 
specific entity, with each driving factor in the process 
also being subject to scrutiny as an obstacle factor [33]. 
When selecting indicators, it is important to consider 
the principle of combining systematicity and hierarchy, 
comprehensiveness, and generalization. Incorporating 
the land’s natural resources and the socio-economic 
status of Sanmenxia City, this research opted for the 
obstacle factors of land resource suitability, ecological 

Target level System level System level 
weighting Indicator layer Indicator layer 

weights

Spatial expansion of 
building land

Obstacles to land resource 
suitability 0.498

DEM 0.032

Elevation 0.043

Distance to water source 0.083

Distance to highways and 
railroads 0.162

Distance from national 
roads and highways 0.206

Distance to town 0.041

Distance to village 0.217

Distance to address disaster 
site 0.215

Obstacles to the value of 
ecological services 0.165

Support Services 0.375

Regulatory services 0.250

Supply service 0.250

Cultural service 0.125

Obstacles to ecological 
security 0.347

NDVI 0.143

Elevation 0.147

Population density 0.096

Land use type 0.098

Ecological reserve 0.096

GDP 0.106

Plaque density 0.089

Shannonville Index 0.107

Ecosystem resilience 0.118

Table 2. Evaluation index system for suitability of spatial expansion of construction land.
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service value, and ecological security. These factors were 
utilized to establish the suitability of spatial expansion 
of built-up land, considering the constraints imposed by 
the obstacle factors. Subsequently, an indicator system 
was developed to evaluate this expansion, as depicted in 
Table 2.

The slope data were acquired from the digital 
elevation model (DEM) through the utilization of 
the Slope tool in ArcGIS 10.7. The categorization of 
ecosystem services into supporting services, regulating 
services, provisioning services, and cultural services is 
derived from the ecosystem service valuation system 
proposed by Costanza et al. [34]. This classification 
is further informed by the table of equivalent factors 
for the value of China’s terrestrial ecosystem services 
established by Xie Gao Di et al. [35]. The economic 
value of a unit of ecosystem services is accurately 
determined by applying equations (1) and (2) and 
subsequently revised using equation (3). The calculation 
of patch density and Shannonville index was performed 
using Fragstats 4.2 software, utilizing land use 
classification raster images. The Elastic Ecosystem 
(ECO) was determined by quantifying land use types 
using equation (4).

  (1)

  (2)

where ESV is ecosystem services value; i is the land 
use type; j is the type of ecosystem service; Ai is the area 
of land use type i; VCi is the value of ecosystem services 
per unit area of land use type i; and ECi is the equivalent 
value of ecosystem services for a given land use type.

  (3)

where Ea is the economic value per unit of ecosystem 
service; i is the type of food crop; mi is the national 
average price of the ith food crop; and pi is the yields 
of the ith food crop; Ea is the economic value per unit 
of ecosystem service; i is the type of food crop; mi is 
the national average price of the ith food crop (yuan/kg); 
and pi is the yields of the ith food crop.

  (4)

where S1 is the area of cultivated land, S2 is the area 
of forested land, S3 is the area of grass, S4 is the area of 
water, S5 is the area of built-up land, S6 is the area of 
unutilized land, and S is the total area.

Standardization of Indicators

Indicators can be categorized into positive and 
negative indicators based on their influence on 
ecological vulnerability, and these indicators undergo a 
process of standardization. Positive indicators suggest 
a positive correlation between the magnitude of the 
indicator and the severity of ecological degradation and 
vulnerability. Conversely, negative indicators suggest 
an inverse relationship, where higher values of the 
indicator correspond to improved ecological conditions 
and reduced vulnerability. Based on the inherent 
characteristics of the evaluation indicators, the indicators 
exhibiting a positive correlation with vulnerability were 
subjected to standardization using formula (5), while 
the indicators displaying a negative correlation with 
vulnerability were subjected to standardization using 
formula (6).

  (5)

  (6)

where  is the normalized value of the positive 
indicator and  is the normalized value of the negative 
indicator.

Entropy Method-Gray Correlation Analysis 
to Determine Indicator Weights

This study utilizes the concept of gray correlation 
and its mathematical model to replace the subjective 
results obtained from the entropy method. Instead, it 
employs the traditional discrimination coefficient ρ in 
the gray correlation analysis to calculate the indicator 
weights in a more objective manner. The entropy 
method is calculated based on formulas (7)-(9), whereas 
the weight calculation results are derived by combining 
formulas (10) and (11).

  (7)

  (8)

  (9)

  
(10)



Shidong Wang, et al.2406

  (11)

Where , when , let; ρ is the resolution factor, which 
takes values in the range of [0,1]; is the minimum 
difference between two levels;  is the maximum 
difference between the two levels.  as the weights of 
indicators.

Markov Model-Based Land Use 
Demand Forecasting

The Markov model was employed to forecast the 
future magnitude of demand for each land use category 
within the research region. In land use change research, 
the Markov model is employed to simulate the impact 
of time phase t on the land use pattern at time phase 
t+1. The precise computations are illustrated in equation 
(12):

Fig. 2. The main driving factors of land use change in Sanmenxia (a is DEM, b is Slope, c is Aspect, d is Temperature, e is precipitation, 
f is GDP, g is population density, h is distance to river, i is distance to administrative area, j is distance to railway, k is Distance to high 
speed, and l is distance to road).
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  (12)

where St and St+1 denote the state of the land at time-
phase t and time-phase t+1, respectively; t is the year; 
Pij is the state transfer probability matrix, which denotes 
the probability of the transfer of land type i to land type 
j.

Spatial Simulation of Land Use 
Based on the PLUS Model

The PLUS model is a novel model built upon 
metacellular automata, utilizing a novel technique 
to analyze the expansion of land use, resulting in a 
more comprehensive understanding of the mechanism 
behind land use change. The model combines the Land 
Expansion Analysis Strategy (LEAS) rule mining 
method with the multi-class random patch seeds 
(CARS) metacellular automata model, which identifies 
changes in land use types over two periods and 
investigates the correlation between these changes and 
the driving factors using the Random Forest algorithm. 
The LEAS method was employed to determine the 
growth probability for each land use category within the 
research area. This information was then combined with 
the number of image elements, transformation matrix, 
and domain weights assigned to distinct land use types. 
Using the CARS model, these factors were used to 
simulate the future spatial distribution of land use. The 
procedure consists of the following steps:

Identification of driving factors: Based on the 
current conditions of the study area and taking into 
account relevant research findings, 12 driving factors 
were chosen. These factors include elevation, slope, 
slope direction, average annual temperature, average 
annual precipitation, GDP, population density, proximity 
to rivers, proximity to administrative centers, proximity 
to railroads, proximity to highways, and proximity to 
highways (Fig. 2).

(2) Setting of restrictive areas: The process of 
determining restrictive areas involves selecting the top 
30% of evaluated areas as suitable for built-up land. 
These areas are further divided into three categories 
(I, II, and III) using the natural breakpoint method. 
In ARCGIS 10.7, the areas unsuitable for conversion 
are assigned a value of 0, while the areas suitable for 
conversion are assigned a value of 1. These values are 
used to define the restrictive areas for built-up land (Fig. 
4).

(3) Simulation process: The simulation process 
involves several steps. Firstly, we select land use 
images from 2010 and 2020. Then, we use the Extract 

Land Expansion tool to identify the expansion portion 
of each type of land use between these two periods. 
Secondly, we combine the land use expansion images 
with the driving factors and analyze them using the 
Land Expansion Analysis Strategies (LEAS) module. 
We use the Random Forest Classification (RFC) method 
to determine the size of the drivers, the development 
probability of each land use type, and the degree of 
influence of each driver on each land use type. Next, 
we simulate the 2020 land use map using the CA model 
of multi-class random patch seeds (CARS). Finally, 
we verify the accuracy of the simulation using the 
Validation module.

(4) Neighborhood weight parameter setting: The 
neighborhood weight parameter is determined by 
calculating the expansion intensity of land use based 
on the land use images from 2010 and 2020. The values 
are standardized to a range of 0-1, where a higher 
value indicates a stronger expansion ability of the land 
category, the specific neighborhood weight parameters 
are shown in Table 3.

(5) Accuracy verification: The accuracy verification 
of the 2020 simulation image and the 2020 real land use 
image yielded an overall accuracy of 89.42%, a Kappa 
coefficient of 90.21%, and a FOM value of 0.26. These 
results indicate that the simulation accuracy is high and 
it can be reliably used for the 2030 land use simulation.

Land Use Type Transfer Trajectories

Transfer Matrix

The land use type transfer matrix provides an 
accurate representation of the number of conversions 
between different land use types during the study period. 
This matrix is useful for analyzing the quantitative 
structural characteristics of different types, as well 
as the direction and quantity of mutual conversions. 
The mathematical expression for the transfer matrix is 
shown in equation (13).

  (13)

where S denotes the transfer matrix during the study 
period; Sij denotes the area (km²) of the ith land use 
type converted to the jth type during the study period 
and n denotes the number of land use types.

Land use type Cultivated 
land Forestry Grass Water Build-up land Unused land

Domain weighting 0.268 0.351 0.144 0.052 0.177 0.007

Table 3. Parameters of domain weights.
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Inward and Outward Transfer Rates

The transfer-in and transfer-out rates of land use 
types quantify the proportion of area that is transferred 
into and out of a specific type, indicating the level of 
stability of that type during the study period. The 
transfer-in and transfer-out rates are computed using a 
transfer matrix, as depicted in equations (14) and (15).

  (14)

  (15)

where Rini and Routi denote the rate of transitions 
into and out of the ith land use type during the study 
time period, respectively, and Sij denotes the area of the 
ith land use type that remained unchanged during the 
study time period.

Fig. 3. Evaluation results of suitability for the expansion of built-up land under obstacle factor constraints.

Fig. 4. Suitability of built-up land expansion at three levels.
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Results and Analysis

Characteristics of Suitability for 
Expansion of Construction Land

Based on the findings from the suitability evaluation 
results of built-up land expansion (as shown in Fig. 3 
and Fig. 4), it has been determined that the majority 

of future build-up land expansion in Sanmenxia City 
will primarily occur in low-lying and gradually sloping 
areas. These areas are mainly located in the northern 
plains near the Yellow River, surrounding the central 
urban area, and alongside the main roads of the city. 
The expansions primarily consist of the northeastward 
growth of Lingbao City along Kaiyuan Avenue, the 
southeastward growth of Sanmenxia City’s central urban 

Fig. 5. Land use map of Sanmenxia in 2010 and 2020.

Fig. 6. Land use projection results for Sanmenxia City in 2030, 2040, and 2050.
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area adjacent to the southwestern Shanzhou District and 
along the inner side of the Lianhuo Expressway and the 
Lianxiang Line, and the northward growth of Mianchi 
County bordering Yima City and along the Heng-
mian Expressway. The distribution tendency primarily 
follows an east-west orientation, resulting in a pattern 
of built-up land development concentrated around the 
central urban area of Sanmenxia City. This development 
extends outwards on both sides in a strip expansion 
fashion.

Characteristics of Future Land Use Simulation 
Results and Spatial and Temporal Changes

The Markov-PLUS model’s accuracy was verified to 
ensure it met the requirements. Using the land use maps 
of 2010 and 2020 (Fig. 5), a future land use simulation 
was conducted. The simulation considered the three-
level suitability of build-up land. As a result, the 
predicted spatial distribution of land use in Sanmenxia 
City for the years 2030, 2040, and 2050 was obtained 
(Fig. 6).

Characteristics of Land-Use Area Change

The future quantities of land use in Sanmenxia City 
were determined using the Markov method (Table 4). 
The changes in area and annual change rates (Table 
5) were then calculated to analyze the quantities and 
rates of change for different land use types during 
various time periods from 2010 to 2050. In general, the 
cultivated land area will progressively decrease annually, 
while the areas of forestry and unused land will remain 
stable. The grass area will exhibit some volatility but 
will stabilize overall. The overall water area will remain 
stable, save for a little rise in 2030. Conversely, the built-
up land area will experience a significant increase. Out 
of these, the area of cultivated land experienced the 
most significant reduction, amounting to 231.65km². The 
pace of change remained relatively constant throughout 
each decade. Subsequently, grass exhibits a reasonably 
consistent rate of change for the initial three periods, but 
will see a substantial fall in 2040-2050 as the trend of 
decreasing area becomes less pronounced. The built-up 
land area will experience the most significant expansion, 
reaching a total of 218.86km². However, its growth rate 

will reduce from 16.99% to 9.63%, showing a gradual 
decline in annual growth. The water expanse will 
experience a gradual and continuous expansion from 
2010 to 2030. However, starting in 2030, the pace of this 
expansion will begin to decrease, eventually dropping to 
a mere 1.03% by the year 2050. The forest lands will 
experience a modest shift, with a yearly growth rate of 
0.64% between 2010 and 2050.

The transformation of land use types was assessed 
by computing the rates of transfer in and transfer out, as 
shown in Table 6. The transfer-out rate of cultivated land 
is higher than the transfer-in rate from 2010 to 2050, 
suggesting a consistent decline in the area of cultivated 
land during this period. Both the transfer-in and transfer-
out rates exhibit a decreasing trend, indicating that the 
decline in cultivated land has been somewhat managed. 
The rates of transfer-in and transfer-out for woodland 
are approximately similar, with values ranging from 
0.06 to 3.71. These rates predominantly remain at a 
very low level, suggesting that the size of the forested 
area will remain largely stable in the future. The 
transfer-in and transfer-out rate of grass is significantly 
higher throughout the period of 2010-2030 compared 
to subsequent years, indicating that a specific area of 
grass is experiencing instability during this timeframe. 
However, it is expected to stabilize after 2030. The water 
in Sanmenxia City experiences a substantial increase 
from 2010 to 2020, with both the transfer rate and the 
transfer rate reaching high levels. However, the transfer 
rate is substantially bigger than the transfer rate, peaking 
at 15.43%. This indicates a major expansion of the water 
area in Sanmenxia City during this period. However, 
between 2030 and 2040, there is a predominant outflow 
of water, suggesting a decline in the water area to some 
degree. This trend is expected to stabilize after 2040. 
The rate of transfer-in for built-up land throughout the 
period of 2010-2040 is approximately 18%, signifying 
a significant increase in the expansion of built-up land. 
However, the growth rate is somewhat regulated after 
2040. The transfer rate of unused land reached 65.08% 
from 2010 to 2020, resulting in a sharp increase in the 
unused land during this period. With the decrease of 
the switching-in rate and the increase of the switching-
out rate from 2030 to 2040, the area of unused land will 
begin to decrease and then begin to stabilize after 2040.

Type
Year

Cultivated land 
(km²)

Forestry
(km²) Grass (km²) Water (km²) Build-up land 

(km²)
Unused land 

(km²)

2010 3489.26 4287.79 1665.6 141.34 350.86 1.76

2020 3424.06 4301.38 1637.62 156.18 410.43 4.65

2030 3367.67 4313.80 1611.12 171.05 468.63 4.26

2040 3308.76 4304.77 1641.24 157.44 519.67 4.65

2050 3257.55 4316.49 1629.03 159.07 569.74 4.65

Table 4. Prediction results of land use area.
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Land-Use Transfer Trajectories

The Sanmenxia City 2010-2050 land use transfer 
matrix was shown using a Sankey diagram to examine 
the patterns of land transfer between various categories 
(Fig. 7). The conversion of cultivated land, forestry, and 
grass areas achieves a balance of payments between 
2010 and 2020. This period experiences the most 
rapid expansion in unused land, while the conversion 
of cultivated land and forestry areas leads to an 
increase in water coverage. From 2020 to 2030, efforts 
have been made to somewhat mitigate the trend of 
deforestation and the degradation of forests. Moreover, 
while the extension of built-up land into agricultural 
areas has significantly improved, the conversion of 
cultivated land into water continues to rise, leading 
to a continuous growth in water areas. Nevertheless, 
while there is a shift of land from cultivated land areas 
to grassy areas, the overall cultivated land area is still 
declining. Between 2030 and 2040, there is a continued 
increase in built-up land development at the expense of 
cultivated land. However, the conversion of cultivated 
land to water is significantly regulated, resulting in 

a stabilization of water areas on a regional scale. 
However, during this period, there is an imbalance 
between the amount of cultivated land and grass, with 
the conversion of cultivated land to grass being the 
major trend. The primary source of compensation for 
cultivated land is derived from built-up land, suggesting 
that a significant number of illicit and unjustifiable 
structures were demolished and converted back to 
cultivated land during this period. The unregulated 
growth of built-up land has been partially curtailed. 
Between 2040 and 2050, the increase in developed land 
has shown the most improvement compared to other 
years. Additionally, there has been a balance achieved 
between income and expenditure in cultivated land and 
grass areas. Furthermore, the tendency of decreasing 
cultivated land will be well managed throughout this 
time. The expansion of watersheds and built-up areas 
reaches a point when it ceases to grow and remains 
relatively constant. During the period from 2010 to 
2050, the predominant occurrence was the significant 
increase in built-up areas, resulting in the conversion of 
a substantial portion of fertile land into developed land.

Type

2010-2020 2020-2030 2030-2040 2040-2050 2010-2050

Area 
change 
(km²)

Annual 
change 
rate (%)

Area 
change 
(km²)

Annual 
change 
rate (%)

Area 
change 
(km²)

Annual 
change 
rate (%)

Area 
change 
(km²)

Annual 
change 
rate (%)

Area 
change 
(km²)

Annual 
change 
rate (%)

Cultivated 
land -64.98 -1.86 -56.64 -1.65 -58.91 -1.75 -51.20 -1.55 -231.65 -6.64

Forestry 15.22 0.35 9.50 0.22 -9.03 -0.21 11.72 0.27 27.34 0.64

Grass -27.70 -1.66 -26.65 -1.63 -30.12 -1.87 -12.21 -0.74 -36.39 -2.19

Water 14.93 10.60 15.88 10.26 -13.60 -7.95 1.63 1.03 18.79 13.44

Build-up 
land 59.64 16.99 58.15 14.17 51.04 10.89 50.07 9.63 218.86 62.39

Unused 
land 2.90 169.59 -0.24 -5.40 0.39 9.12 0.00 0.00 3.05 191.06

Type
2010-2020 2020-2030 2030-2040 2040-2050 2010-2050

Rin (%) Rout (%) Rin (%) Rout (%) Rin (%) Rout (%) Rin (%) Rout (%) Rin (%) Rout (%)

Cultivated 
land 4.26 6.43 3.92 5.84 2.49 4.38 1.50 3.12 5.88 13.80

Forestry 3.71 3.49 1.76 1.57 0.06 0.27 0.35 0.07 4.26 3.78

Grass 5.47 7.57 5.42 7.48 3.32 1.53 2.02 2.83 8.81 12.11

Water 15.43 6.92 15.36 7.15 0.74 9.45 1.10 0.08 18.01 7.52

Build-up 
land 19.63 6.36 17.21 5.79 18.57 10.75 11.17 2.68 41.68 5.60

Unused 
land 65.08 6.21 17.57 28.24 8.36 0.00 0.00 0.00 66.82 3.54

Note: Rin represents the transfer rate; Rout represents the turnover rate.

Table 5. Amount and annual rate of change of land use area in Sanmenxia City, 2010-2050.

Table 6. Land use transfer rate and transfer out rate in Sanmenxia City, 2010-2050.
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Characteristics of Land-Use Area Change

Based on the land use spatial pattern in 2010-2050 
(Fig. 5 and Fig. 6) and the land use expansion map in 
2010-2050 (Fig. 8), it is evident that the rate of land use 

change in the northern plains is higher during the period 
of 2010-2050. This suggests that the land use types in 
this region are relatively dynamic, although the level of 
activity varies across different time periods. During the 
period of 2020-2030, the changes in built-up land use 

Fig. 7. Land use transfer trajectory in Sanmenxia City, 2010-2050.

Fig. 8. Land use expansion in Sanmenxia City, 2010-2050.



Evaluation of Suitability for Built-Up Land... 2413

are particularly noticeable, especially when contrasted 
to changes in other types of land use. These changes 
primarily occur in the form of expansion around urban 
areas. The period will witness the primary growth of 
built-up land in Shanzhou District, with additional 
clustering of built-up land development in the region. 
Zhangwan Township, located on the southwest side of 
Sanmenxia City, will also expand towards Daying Town. 
Lingbao City will continue to extend upwards along the 
rivers in the northeastern part of the city. Additionally, 
Mianchi County and Yima City will continue to share 
a border and expand northwards along the Hengmian 
Expressway. The future land use of Sanmenxia City 
will be planned according to the principles of axial belt 
development and group layout. The town development 
space in the Shanling Basin will serve as the primary 
area for this development. The formation of a belt and 
group-type town cluster will be based on the Longhai 
Railway, Lianhuo Expressway, and National Highways 
209-310 areas. Additionally, efforts will be made to 
actively promote the construction of the Mianchi-Yima 
industrial development wing.

Conclusion and Discussion

This study assesses the suitability evaluation for 
expansion of built-up land by considering obstacles 
related to suitability for development, ecological service 
value, and ecological security. It then uses the results 
of the built-up land expansion suitability assessment to 
simulate and predict future land use expansion, treating 
it as a restricted area for land use development. Finally, 
it analyzes the characteristics of the changes observed. 
The primary findings can be summarized as follows:

(1) The majority of the future growth of developed 
property in Sanmenxia City will mostly consist of low-
lying and gradually rising terrain. This land will be 
located in the northern plains along the Yellow River, 
as well as in the areas surrounding the center urban area 
and the main city roadways. The distribution tendency 
primarily follows an east-west orientation, resulting in 
a built-up land development pattern centered around the 
main metropolitan area of Sanmenxia City. This pattern 
expands in a strip-like manner, expanding outwards on 
both sides.

(2) From 2010 to 2050, the forestry and unused land 
area is expected to remain relatively constant. The grass 
area will fluctuate within a specific range. The water 
area will generally remain stable, except for a predicted 
increase in 2030. On the other hand, the cultivated land 
area will gradually decrease over the 40-year period, 
with a total reduction of 231.71km². In contrast, the 
built-up land area will increase by 218.88km², with 90% 
of it being converted to cultivated land.

(3) Between 2010 and 2050, the rate of land use 
change in the northern plains zone is very high, with 
land use types exhibiting quite high levels of activity. 
Future built-up development will primarily occur in 

Shanzhou District, with an additional concentration of 
built-up land in the region. Zhangwan Township, located 
southwest of Sanmenxia City, will also extend towards 
Daying Town. Lingbao City will continue to expand 
along the rivers in the northeastern part of the country. 
Mianchi County and Yima City will continue to share 
a border and expand northward along the Hengmian 
Expressway.

This study establishes the appropriate region for 
the expansion of built-up land in Sanmenxia City and 
predicts the future spatial distribution of land use based 
on this. The findings serve as a valuable guide for the 
expansion of built-up land and the efficient utilization 
of land in the area. Nevertheless, there are certain 
limitations: 1) When constructing the index system to 
assess the suitability of expanding built-up land, obstacle 
factors are primarily chosen based on land suitability, 
ecological value, and ecological safety. However, the 
selection of obstacle factors does not take into account 
the connection between built-up land expansion and 
landscape ecology. In order to more accurately evaluate 
the appropriateness of developed land, it is necessary 
to give further consideration to a range of issues in 
the future. 2) The simulation of future land use only 
considers the constraint of the suitable area for built-
up land expansion, but does not take into account the 
“three lines”. As a result, the future land use outcomes 
may diverge from the policy planning to some extent. 
In order to get more accurate outcomes in the future, it 
is imperative to thoroughly take into account the policy 
considerations.
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