
Introduction

Rocks under high ground stress are in triaxial 
compression equilibrium, or limit equilibrium, and 
store a large amount of energy. The unloading process 
of underground tunnel excavation will inevitably 
lead to the redistribution of peripheral strain and the 
concentration of local strain. When it reaches the 

ultimate strength of the rock, it will fail. If the energy 
in the rock is greater than the energy used to destroy 
the rock, then the remaining energy is released as 
kinetic energy, ejecting the broken rock to form a rock 
blast. This is the so-called rock blasting phenomenon, 
which is a kind of geological disaster in areas with high 
ground stress. With the extensive construction of traffic 
tunnels, rockburst has become more and more common 
in the construction of traffic tunnels, and even become 
the main technical bottleneck [1-9]. In the field of traffic 
tunnels, especially in high ground stress areas, there 
are thousands of engineering accidents caused by rock 
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Abstract

In response to the frequent occurrence of rock blasting during traffic tunnel excavation 
under high ground stress, this paper presents a detailed introduction to microseismic monitoring 
technology. Firstly, the principle and role of microseismic monitoring are explained, including the 
characteristics and main processes of microseismic monitoring technology. Secondly, the characteristics  
of microseismic monitoring technology are introduced, and the different characteristics encountered  
in the application of microseismic monitoring technology to traffic tunnels are discussed.  
The introduction of the microseismic monitoring process includes six parts: microseismic 
signal acquisition, recognition and classification, noise reduction, arrival detection, localization,  
and microseismic-based forecast and warning. Finally, an outlook on the development of microseismic 
monitoring in traffic tunnels is given.
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bursts every year, with approximately 1000 casualties. 
Many construction projects have been delayed for six 
months or even longer, and even hundreds of millions 
of yuan worth of mechanical equipment have been 
scrapped. Therefore, it is particularly important to 
explore an efficient and real-time monitoring method for 
rock bursts [10]. Fig. 1 shows the structural damage and 
disease caused by the rock burst in the traffic tunnel.

Rock burst is induced by the change of the external 
environment and stress field, which is a kind of 
instability result of dynamic rock failure, such as the 
initiation, development, and penetration of micro-
fracture. According to the characteristics of this process, 
a variety of methods have been developed to monitor 
rock bursts. According to the monitoring information, 
taking measures before a rock burst can ensure the 
safety of construction. Commonly used methods include 
the microseismic monitoring method, the acoustic 
emission method, the electromagnetic radiation method, 
the rebound method, etc.

(1) Acoustic Emission Method [11-15]
The acoustic emission method is realized by elastic 

waves generated when cracks appear in rock mass. The 
acoustic emission signals generated by rock cracks are 
collected by electronic sensors stored, and analyzed by 
the system after being amplified by amplifiers.

(2) Infrared Thermography [16-18]
There is an obvious phenomenon of heating during 

the process to rock failure, and an abnormal change 
in infrared temperature indicates a fracture. In the 
excavation, infrared anomalies caused by the rapid 
rise of the temperature of the surrounding rock are 

precursors of rock bursts. Infrared thermography 
technology predicts the possibility of a rockburst by 
monitoring the thermal radiation temperature.

(3) Electrical Radiation method [19-23]
The electromagnetic radiation signal before a rock 

burst is obviously abnormal. The occurrence of a rock 
burst can be predicted well by monitoring the abnormal 
electromagnetic radiation signal. The electromagnetic 
radiation monitoring can reflect the stress state of the 
orebody in time and has the characteristics of non-
contact and regional monitoring, which is effective 
in predicting the rock burst. In addition to the 
above methods, there are photoelastic methods and 
deformation methods, which mainly use parameters 
such as stress, deformation, and damage to infer the 
occurrence or grade of a rock burst. However, it is 
difficult to ignore the corresponding limitations when 
applied to traffic tunnels. First of all, most methods can 
only monitor the rock mass in a small area, such as the 
AE method and the infrared thermography method, 
which cover very limited areas. Secondly, the real-time 
performance and high efficiency of monitoring methods 
such as the infrared thermography method and the 
rebound method cannot be guaranteed. Moreover, such 
as infrared thermography, electrical radiation methods, 
and other related technology, research still requires 
development in the application of specific projects and 
needs further research. Based on this situation, this 
paper introduces microseismic monitoring technology 
with wider coverage, higher timeliness, and more 
mature technology, and discusses its application in 
traffic tunnels.

Fig. 1. Disease induced by rock blasting in traffic tunnel.
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At present, microseismic monitoring has been 
applied to mining tunnels, hydraulic tunnels, etc., and 
has been proven to be able to monitor the occurrence 
of rock bursts during tunnel excavation in real time 
and successfully warn [24-26]. In traffic tunnels, the 
application of microseismic monitoring is not yet mature. 
In this review, the specific process of microseismic 
monitoring will be introduced by comparing the 
differences between mining tunnels and traffic tunnels.

Microseismic Monitoring

Conventional monitoring of rock bursts is always 
not so continuous, not real-time, and difficult to detect 
the instantaneous change. These problems were all 
crucial in the monitoring of rock bursts. Microseismic 
monitoring has been proposed to solve these problems. 
Microseismic monitoring determines the stability of 
the rock and the chance of a rock burst by the signals 
generated when fractures happen. With the boom 
of computer technology and advanced algorithms, 
microseismic monitoring has been well developed in 
geotechnical and tunnel engineering, including mining 
engineering [27], hydropower copper chamber [28], 
tunneling engineering [29], rocky slope [30] and other 
projects.

Fig. 2 is a schematic diagram of the application 
of microseismic monitoring in tunnels. When rocks 
are subjected to ground stresses, local concentrations 
of elastoplastic energy occur. And when the energy 
accumulates to a critical value, it will lead to the 
creation and propagation of microcracks in the rock, 
releasing energy in the form of elastic or stress waves. 
Microseismicity is a phenomenon that accompanies the 
process of rock destruction. Microseismicity contains  
a wealth of information about the damage and geological 
activation processes in the surrounding rocks [31-34].  
A reasonable and scientific arrangement of some pickups 
in the monitoring area to collect the microseismic 
signals can infer the internal morphological changes 
of the rock and its damage mechanism. Microseismic 
monitoring is developed based on seismic monitoring. 
The principle of it is the same as seismic monitoring 
and acoustic emission monitoring technology, basically. 
In contrast, the advantages of microseismic monitoring 
are greater; in particular, microseismic monitoring 
has a wider signal frequency and a larger monitoring 
range than acoustic emission monitoring. When it 
comes to the actual application, a proper microseismic 
monitoring system must be selected to meet the needs  
of rock blasting monitoring, that is, to be able to cover 
the frequency range of the breeding process of rock 
burst.

Fig. 2. Microseismic monitoring in tunnels.

Table 1. Different rock burst monitoring methods.

Type Monitored Area Effect Disadvantages Application

AE method Micro-fracture Area High-precise, real-time Small coverage and vulnerability 
to adverse environmental effects Wide

Infrared thermography 
(IRT) Micro-fracture Area High-precise  

and real-time
Small coverage and vulnerability 
to adverse environmental effects Not widely

Electromagnetic 
radiation method Micro-fracture Area High-precise  

and real-time
Small coverage and vulnerability 
to adverse environmental effects Not widely
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The tunneling will increase local microcracks, which 
could lead to microcracks in certain areas, forming areas 
of agglomeration, or severe damage, as shown in Fig. 3. 
The energy from the disturbance of the tunnel envelope 
will propagate in the form of vibrations and sound 
waves in all directions and be received by multiple sets 
of pre-planted geophones. Since the distance between 
the source and the geophones is varying, the time taken 
for the vibration wave to propagate to the geophones and 
the arrival times accepted on the geophones will also 
vary. The localization of the source and the calculation 
of the energy can be carried out based on the differences 
in arrival time between the individual geophones.  
The location and energy of this rock rupture can be 
displayed in a three-dimensional space. Microseismic 
monitoring of rock bursts is based on the assessed 
source. Multiple sensors are arranged to collect elastic 
wave signals released from the rupture of the rock in the 
area of the rock burst. Based on these signals, further 
analysis can be carried out to obtain the location, time, 
energy, etc. of the rupture. On this basis, rock movement, 
mathematical statistics, fuzzy mathematics, simulated 
annealing-simple shape algorithm, moment tensor, fractal 
mathematics, and the double difference localization 
method are also used to study the active characteristics 
of predicting and forecasting the dynamic disaster of  
a traffic tunnel under high ground stress.

Microseismic monitoring has shown its advantages 
in many applications. These include three-dimensional 
spatial monitoring with a large range, a continuous 
monitoring process, timely and intuitive processing and 
analysis of monitoring results, being less labor-intensive, 
and the ability to transmit data over long distances. Feng 
et al. studied the microseismic characteristics during 
the development process of rockburst and analyzed 
the mechanism of rockburst formation [35]. Zhang 
et al., based on the rockburst process of the Jinping 
II hydropower station, found that the microseismic 
monitoring process has a sleep period, which can be 
used to evaluate the development process and laws of 
rock bursts [36]. Although traffic tunnels and mining 
tunnels have some differences in many aspects, the 
advantages of microseismic monitoring are still effective 

when applied to traffic tunnels. The deference mainly 
includes the section size, construction methods, and 
operating conditions. The main issues that require 
addressing when using microseismic monitoring to 
detect rock bursts in traffic tunnels under high ground 
stress are signal acquisition and source location. 
However, there are still several issues that need to be 
considered in the application, especially the difference 
between traffic tunnels and mining tunnels.

Firstly, in terms of signal acquisition, the 
considerations of the arrangement of sensors are 
different. Mining tunnels are usually not very large in 
cross-section, so the area that needs to be considered 
is not as large as a traffic tunnel. However, a certain 
amount of analysis is still required to ensure the 
signals are adequately received in the risk area of 
rock burst within the excavation when the section size 
increases exponentially. Secondly, in terms of signal 
recognition and classification, due to the much larger 
scale of traffic tunnels compared to mining tunnels, 
the areas affected and interfered with by signals will 
also expand, leading to difficulty in signal recognition 
and unclear classification. At the same time, during  

Fig. 3. Process of microfractures due to microseismics.

Fig. 4. Schematic of the rock blasting microseismic monitoring 
principle.
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a high probability of a rock burst. As shown in Fig. 5a), 
it is a diagram of the three-dimensional staggered 
arrangement of sensors in space when a tunnel sensor 
is unable to surround the risk region of a rock burst. 
At the same time, the arrangement should be designed 
according to the area and type of potential risk of a rock 
burst. And as to the other characteristics, construction 
methods and conditions should also be considered. 
Before excavation, sensors should be placed in areas 
with a high risk of rock burst as close as we can. And 
during excavation, sensors should be added dynamically 
to areas of unfavorable geological conditions and areas 
of high risk of rock burst in close proximity to the 
excavation process. Sensors should be placed close to 
potential risk areas of rock burst to effectively improve 
their ability to capture signals. But consideration 
should be given to the feasibility and convenience of 
sensor placement under different construction methods, 
such as drill and blast construction. Consideration 
should be given to blasting, which may cause damage. 
During the TBM construction, consideration should be 
given to the structure of the TBM when choosing the 
location for installation. Considering that sensors are 
usually arranged in groups on the axis, typical sensor 
arrangements for different types of rock blasting 
monitoring are shown in Fig. 5. As to an instantaneous 
rock burst, the sensors should follow the excavation 
of the face and move dynamically to ensure that  

the construction period, the deformation of the 
traffic tunnel will be strictly controlled through 
advanced support and other means, which will also 
lead to differences in the scope and requirements of 
microseismic monitoring. Finally, the requirements for 
signal processing differ in terms of noise reduction and 
time of arrival detection during signal acquisition. Due 
to their larger cross-section and higher construction 
noise, traffic tunnels undoubtedly require higher 
processing algorithms when real-time and accurate 
processing of large amounts of information is required. 
Therefore, it is necessary to discuss in detail the process 
of microseismic monitoring to explore its application in 
traffic tunnels. The process of microseismic monitoring 
can be simply represented by Fig. 4.

Microseismic Monitoring Processes

Signal Acquisition

The acquisition of microseismic signals is the 
basis of microseismic monitoring, and the reasonable 
arrangement of microseismic monitoring sensors 
is the basis for effectively capturing rock fracture 
signals. Different ways of distributing the geophones 
have different influences on the positioning accuracy. 
Firstly, the sensor layout should surround the area with  

Fig. 5. Different layouts of microseismic sensors for typical rock bursts.
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the rupture near the face can be captured in real time, 
as shown in Fig. 5a). For time-lag rock bursts, sensors 
can be arranged around the potential area of occurrence,  
as shown in Fig. 5b). For intermittent rock bursts, as 
the process is usually long and the tunnel is suspended, 
additional sensors should be temporarily added close 
to the area of the burst. A typical arrangement for 
intermittent monitoring of rock bursts in drill and blast 
tunnels is shown in Fig. 5c).

In optimizing the distribution of geophones, 
reference should be made to the theories of the optimal 
distribution of seismic networks. Noureldin et al. [37]. 
considered the theory and proposed a Monte Carlo 
algorithm for the numerical calculation of the monitoring 
capacity of seismic networks and a method for the 
design of microseismic networks based on D-value 
and C-value optimization design theory. D-value 
optimal design theory suggests that the optimization of 
geophone locations depends on the covariance matrix 
of the source parameters, and C-value optimal design 
theory analyzes the relationship between the distribution 
of the network and the number of conditions in the 
resulting set of equations from the point of view of the 
robustness of the affected non-linear system. Guided 
by the D-value optimal design principle, Gong et al. 
[38, 39] applied the D-value optimization design theory 
to design a station network deployment optimization 
and evaluation system for microseismic monitoring of 
mine caves and to establish an objective function for 
the optimal layout of the station network for the large-
scale station layout combination optimization problem. 
In order to be more in line with engineering practices, 
Toledo et al. [40] designed and characterized local and 
regional microseismic monitoring arrays dedicated to 
geothermal exploration and volcano monitoring based 
on D-value optimization design and finally calculated 
the location of microseismic occurrence through 

multiple Monte Carlo experiments. Zhou et al. [41] 
proposed a network optimization method based on the 
geometric parameters of the sensor point database, and 
through the comparison with the existing layout scheme 
and numerical simulation, it was concluded that the 
optimization effect of the method meets the engineering 
requirements for high efficiency and intelligence in 
signal reception and acquisition.

Recognition and Classification

Data processing is the next step after signal 
acquisition, and Fig. 6 shows a flowchart of the 
process of processing the signal after acquiring it. 
It is a challenge to process the large amount of data 
collected by the microseismic monitoring system 
quickly and efficiently. Especially the part to extract 
and separate the microcapture signals from the noisy 
signals, which are of widely varying quality. It would be 
particularly inefficient if they were mainly carried out 
by experience. Microseismic monitoring techniques are 
derived from theories based on acoustic emission and 
seismology [42]. Therefore, the methods of processing 
microseismic signals in traffic tunnels can be referred 
to as the processing of acoustic emissions and seismic 
signals. The process generally consists of four steps: 
identification and classification, noise reduction, arrival 
detection, and source localization. The identification 
of rupture signals is finished by analyzing the 
microseismic waveform to identify the microseismic 
events. In the process of signal processing, the signals of 
rupture and noise often have a similar and intertwined 
waveform that needs to be processed for noise reduction.  
The final step in the processing is to locate the 
source of the seismic activity and determine its exact 
location, which gives preparation for early warning and 
prediction.

Fig. 6. Processing process of a microseismic signal.
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The first task of signal processing is to identify 
the microseismic event. It is the fundamental part of 
the whole process, and if there is an error in this part, 
the results will be meaningless. The data collected by 
microseismic monitoring systems is complicated, and 
most of it is noisy data, which interferes with automatic 
detection. Therefore, how to extract the microseismic 
signals accurately and efficiently from the huge amounts 
of data is a critical issue. There are a lot of studies that 
have explained the difficulty of distinguishing between 
microseismic and non-microseismic signals and made 
remarkable progress on it. The methods of these studies 
mainly include multi-parameter analysis and spectral 
analysis.

Multi parameter analysis can use the methods 
of maximum likelihood, Fisher classification, Bayes 
discriminant, and logistic regression for microseismic 
classification and parameter identification. It can 
extract the relevant features well enough to provide 
good microseismic detection. However, the variability 
and complexity of characteristic parameters make this 
process difficult and inefficient. Spectral analysis has 
been well used in the identification and classification of 
microseismic signals because of its simple, rapid, and 
effective feature extraction [44]. In recent years, the 
rapid development of various automatic microseismic 
recognition and classification algorithms has made an 
important contribution to addressing the inefficiency 
of microseismic recognition. Some of the classical 
recognition and classification methods include the 
amplitude-based long-short window method (Short Term 
Average/Long Term Average, STA/LTA), waveform 
correlation, fingerprinting, similar thresholds, etc. 
Each method has its own advantages and limitations. 
Mitchell Withers [45] found that an STA/LTA-based 
signal recognition approach provided the most globally 
relevant output - based on an event detection and 
localization system. The STA/LTA method uses the 
ratio of STA to LTA to represent the amplitude and 
frequency change of the microseismic signals. The 
arrival of the signal will cause a sudden change in the 
value. When the ratio of STA to LTA is greater than 
the set threshold, it is considered a microseismic event. 
This method is very effective for high SNR signals, but 
poor for low SNR signals and easy to miss. Robert J. 
[46] applied waveform correlation analysis to study 
matching templates for an earthquake in Ohio and found 
that waveform correlation analysis works better when 
microseismic events of the same source mechanism 
are in the same region, but it requires a high number 
and quality of templates. An increase in the number of 
templates can lead to a rapid increase in computational 
effort, so finding a balance between the number of 
templates and computational effort is also necessary  
for fast and effective identification of microseismic 
events.

Although the parameter analysis method, spectrum 
analysis method, and various automatic identification 
methods are effective. Each method has disadvantages: 

complex parameters, huge calculations, low efficiency, 
and instability, for example. With the development 
of computers, machine learning, and deep learning, 
recognition methods based on deep learning have been 
applied to the recognition of microseismic signals at 
present. The method takes the original waveform as input 
for identification. It realizes the real-time identification 
of a large number of microseismic waveforms accurately 
and efficiently. Yoon et al. [47] developed an effective 
method for seismic detection using waveform similarity 
to overcome the shortcomings of existing detection 
methods, called Fingerprint and Similarity Thresholding 
(FAST). The Fingerprint and similarity threshold 
method (FAST) is an audio fingerprint algorithm 
based on Wave print, which is also a combination of 
computer vision technology and big data processing 
methods. FAST condenses each extracted waveform 
feature into a compact “fingerprint” and combines it 
with a locally sensitive hashing algorithm so that it can 
reduce the amount of similarity search. It performs well 
in many aspects, such as sensitivity, applicability, and 
computational efficiency, but it has high requirements 
on memory and overhead. Fig. 7 shows the steps Clara 
takes using the FAST method to extract features.

Convolutional Neural Networks (CNN) are thriving 
and have shown strong performance in seismic signal 
classification successfully [48]. Feed-forward neural 
networks (FNNs), recurrent neural networks (RNNs), 
and CNNs are the typical structures of deep neural 
networks. The traditional FNN usually contains several 
layers, and all the neurons are connected between 
layers. Usually, some waveform features are taken as 
the input of FNN, but direct input of waveform data, 
especially multi-channel waveform data, will cause 
dimensionality disaster. RNN is a model architecture 
obtained by extending FNN in the temporal dimension. 
A neuron in an RNN obtains data from the previous 
layer and the previous moment of output from that 
layer. Microseismic signal is also a type of time series 
data in this respect, so the RNN is very suitable for the 
modeling of microseismic signal.

Fig. 8 is a schematic diagram of the proposed CNN 
model construction. Convolutional neural network 
(CNN) has the feature of weight sharing, which can 
deepen the number of neural network layers, reduce 
network parameters, and have a great improvement in 
feature extraction. It has accelerated development and 
breakthroughs in speech and visual recognition, natural 
language processing [49], microseismic wave shape data 
analysis and processing, and other fields. In fact, the 
microseismic wave shape also has translation invariance, 
which makes CNN suitable for the establishment of 
microseismic data classification models. In traffic 
tunnels like Micangshan Tunnel [50] and Bayu Tunnel 
[51], people have established an intelligent classification 
model of microseismic waves based on convolutional 
neural networks to classify microseismic signals, which 
has been well applied. Fig. 9 shows the general steps of 
the CNN method.
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Noise Reduction

In the process of identification and classification, the 
signals are disturbed by noise. These disturbances include 
construction noise, instrument noise, mechanical noise, 
electrical noise, and other noises. They affect the work 
of microseismic monitoring seriously. So the reduction of 
noise becomes another key part of microseismic signal 
processing. The source parameters can be obtained to the 
maximum extent, and the accuracy and effectiveness of 
early warning can be further improved by reducing the 
noise [52, 53]. However, due to the complexity of the 

environment, this work is not so easy. It not only changes 
with time, but its frequency band also overlaps with that 
of the target signal. 

Traditional methods of noise reduction cannot 
eliminate the noise completely. And it may cause 
distortion of the signal. On the one hand, the parameter 
settings of traditional noise reduction methods will 
affect the effect of noise reduction under the influence 
of different types of noise. On the other hand, traditional 
automatic extraction methods often need to adjust the 
algorithm parameters to achieve the best accuracy, 
which will further affect the accuracy of the signal 

Fig. 7. Feature extraction steps in FAST by Clara [43].

Fig. 8. The architecture of the proposed CNN model.
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source location. In the traffic tunnels, the different 
characteristics of microseismic monitoring signal noise 
will also have an impact on the noise reduction work. 
Firstly, the larger size of the traffic tunnel makes the 
number of signals collected huge, and thus the noise 
contained therein is more complex. Most importantly, 
the construction steps of the traffic tunnel are more 
complicated and tedious, which makes the noise signal 
more complex in time and space. Last but not least,  
a large number of different noises will affect the analysis 
of the tunnel structure during operation.

Many studies have been carried out to address 
these problems. Tselentis et al. [54] studied noise 
reduction based on the S-transform; L Smith et al. [55] 
studied noise reduction based on the short-time Fourier 
transform; Mousavi et al. [56] studied noise reduction 
based on the continuous wavelet transform; Wei et al. 
[57] studied noise reduction based on empirical modal 
decomposition; J Misztela et al. [58] studied noise 
reduction based on fuzzy mathematical noise reduction; 
W Jiang et al. [59] studied noise reduction based on 
singular spectrum analysis; Chen et al. [60] studied noise 
removal based on the sparse transform approach; Li et 
al. [61] studied noise removal based on the mathematical 
morphology approach; and K Huang et al. [62] studied 
noise removal based on non-local mean algorithm. In 
recent years, deep learning has emerged as a powerful 
machine learning technique that has brought great 
advances to signal and image processing [63]. Innovative 
ways based on deep learning for data interpolation and 
the reduction of noise have been proposed in image 
processing by residual-neural networks [64], generative 
adversarial networks, and convolutional autoencoders 
[65]. And some studies have shown that deep learning 
has been used to improve seismic noise reduction by 
learning better sparse representations [66-68] and has 
proven to be a powerful tool for learning features of 
seismic data [69-71].

Arrival Detection

Further analysis of the microseismic signal can be 
performed once the noise deduction and waveform 
identification are completed. Some key parameters 
of the earthquake source can be obtained from these 
parts, such as the time of occurrence, the location of the 
source, the corresponding intensity of the microseismic 
event, and the mechanism of the source. Early warnings 
of impending danger can be made based on that. And 
the detection of arrival time is the basis of this work. 
The microseismic signal can be regarded as a special 
kind of temporal data, and its temporality is reflected 
in its composition, which is P-band, S-band, and noise 
segment, in that order [71]. Arrival detection is much 
more difficult than signal identification because arrival 
detection of microseismic waves requries microscopic, 
ultra-long sequence processing with millisecond-level 
accuracy. There are also many research disciplines on 
arrival time detection.

(1) Long-Short-Term Window Ratio [72-74]. The 
ratio of Short-Term Average (STA) and Long-Term 
Average (LTA) is used to reflect changes in signal 
amplitude, frequency, etc. When a microseismic signal 
arrives, there is a sudden change in the STA/LTA value. 
A microseismic event can be determined when the ratio 
is greater than a certain set threshold. This method is 
the most common method used in commercial software 
for microseismic monitoring. It is computationally 
small and suitable for handling large batches of data. 
However, it is only robust to laboratory data with a 
very high signal-to-noise ratio and performs poorly on 
real engineering data filled with noise. In addition, the 
performance of the algorithm is also dependent on the 
choice of thresholds and requires human selection of 
appropriate thresholds.

(2) Akaike Information Criterion (AIC) [75]. The 
minimal point of the waveform curve, which can be 
calculated by AIC, is used as the arrival point of the 
P-wave. It is usually combined with other methods such 
as wavelet transform (wavelet-AIC) or Auto Regression 
(AR-AIC). The method associated with AIC performs 
well in actual seismic activity, but is prone to errors 
because local maxima and global maxima are not 
easy to separate [76]. And it is equally susceptible to 
background noise for microseismic data of low quality, 
i.e., data with a relatively small signal-to-noise ratio.

(3) Wavelet transform and frequency domain 
transform. Feature functions are set in other domains 
and combined with other methods such as K-Means, 
principal component analysis (PCA), and AIC for to-
time picking [77-79].

(4) A data-driven method. The features are 
automatically extracted from a lot of labeled data with 
deep learning-based algorithms. For arrival detection, 
this part of the algorithm still has a relatively high 
accuracy [69, 80]. However, the length of microseismic 
monitoring signals is generally long, and the currently 
used deep learning architectures have problems dealing 
with such ultra-long sequence signals. The support 
for ultra-long sequences is yet to be completed. The 
imbalance problem will also lead to only one arrival 
point among thousands of sampling points, and model 
training will not converge.

Therefore, the long- and short-term memory 
network model can realize the comprehensive analysis 
of temporal information and complete the long-term 
preservation of information. However, it is difficult to 
pick up the accurate P-wave directly from the original 
data by using the long- and short-term memory network 
due to the characteristics of microseismic signal 
instability and a low signal-to-noise ratio. As can be seen 
above, both arrival detection and signal identification 
are affected by surrounding noise and static noise [81]. 
Although many noise reduction algorithms have been 
proposed by researchers [82], the use of these techniques 
results in the loss of information from the original data, 
causing the distortion of the signal. Therefore, the ideal 
way is to process the original data by the algorithm 
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directly. In addition, many previous studies have been 
limited by the experimental data. Compared with the 
records in actual engineering, the experimental data 
are simple, lack of noise, and have few types of rupture 
signals due to the singularity of lithology. It is easy for 
the algorithm to achieve good results based on these 
data, while the errors caused in practical applications 
cannot meet the engineering needs.

Localization

Localization of microseismics is at the core of 
microseismic monitoring [83-85]. In this process, the 
microseismic monitoring system inferred the location 
of the rupture after processing the signals accordingly. 
Microseismic signals have similar mechanisms of 
source and signal characteristics as natural seismic 
signals, and therefore the localization methods are 
mostly cited from seismology [86]. In essence, it is  
a common inversion process in geophysics; that is, 
after analyzing the first arrival time of an event and the 
corresponding coordinate position, the corresponding 
spatial position is inversed The direct shear wave is 
easily disturbed by the subsequent wave in the tail of 
the longitudinal wave, so the longitudinal wave signal is 
mainly used to locate the source. In the actual work, the 
number of sensors is very large. Therefore, the process 
of inversion can be described as a process of solving 
super-stationary equations. The direct shear wave is 
easily disturbed by the subsequent wave in the tail of the 
longitudinal wave, so the main part used to locate the 
source is the longitudinal wave signal. The microseismic 

localization methods mainly include geometric 
localization methods, relative localization methods, 
spatial domain localization methods, linear localization 
methods, and nonlinear localization methods. According 
to the different localization principles, the localization 
methods can also be divided into two types; those based 
on three-axis sensors [87-90] and those based on the 
arrival-time difference theory [91-93].

The essence of the classical seismic localization 
method proposed by Geiger is to linearize the nonlinear 
system of equations and solve it using the least squares 
principle. The method involves partial derivatives and 
inverse matrix operations, which are computationally 
intensive [94]. With the development of computer 
technology, Geiger’s idea has been widely used. Also, 
various joint inversion methods [95], relative localization 
method [96], table-even time difference method [97], 
simplex method [98], double residual method [99], and 
Powll method [100] have contributed to the development 
of studies in earthquake source localization. These 
methods can be divided into 2 categories depending 
on the parameters involved in the solution [101]. One 
is the localization method, which uses a known wave 
velocity model to solve for the source time and location, 
also known as the classical method. The other is the 
joint method, which addresses the location, source 
time, and wave velocity model together. The classical 
method is most widely used in the seismic field and 
mining engineering. The inaccuracy of the wave 
velocity model is its disadvantage. Although there 
have been many studies on the wave velocity model, 
it is still a crucial problem affecting the stability and 
positioning accuracy of the location algorithm. The joint 
method addresses it better and improves localization 
accuracy to a large extent. However, the parameters 
of location, seismic time, and medium velocity in the 
joint method are not independent of each other, which 
means that the obtained solutions are not unique. This 
also poses difficulties in the selection of parameters. 
With the intercommunication and penetration of various 
disciplines, optimization methods from other fields have 
been used, such as genetic algorithms, particle swarm 
algorithms, simulated annealing methods, etc. [102-104]. 
The localization method has gradually developed from 
the mathematical model to the bionic model.

Traditional analysis of time series and machine 
learning choose features instead of the whole signal. 
The data may not be fully utilized due to subjective 
human factors. Deep-learning models can extract a 
large number of higher-order features automatically, 
thus making full use of waveform information. The 
data can be directly used as input to the neural network, 
avoiding the loss of information caused by manual 
selection. Deep learning is also well suited to handle 
the large amount of daily data. Many studies have also 
confirmed the potential and efficiency of deep learning 
over traditional methods in microseismic monitoring. 
However, the current network for microseismic signal 
identification still has disadvantages in certain parts.

Fig. 9. The flow chart of the proposed approach based on CNN.
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(1) The simple network is limited in handling 
complex datasets containing a large number of atypical 
waveforms. Moreover, microseismic signals are often 
interrelated multi-channel signals, and processing 
multiple channels simultaneously consumes more 
resources, which is also not easily deployed on low-
equipped machines in the field.

(2) More layers are usually added to the network to 
increase processing power. However, simply stacking 
layers may lead to network degradation [105] and 
gradient disappearance [106]. Moreover, each additional 
layer leads to a significant increase in the number of 
parameters and computational complexity. Some models 
even contain hundreds of thousands or even millions of 
parameters [107]. However, such complex models are 
not really needed to accomplish the task of waveform 
classification, and the deepening of the network would 
lead to redundant computations.

(3) Most of the microseismic signals currently 
processed using deep convolution save the signal as a 
picture and then use some open-source architectures of 
computer vision for processing. However, the features 
of the microseismic signal images are so different from 
those in the ImageNet dataset [108] that it is difficult to 
use the pre-trained weights of these architectures. And 
the scale of models of deep learning in the CV domain 
is very large, and the huge computational resource 
consumption makes the deployment and training of the 
models problematic.

Microseismic-Based Forecast  
and Early Warning

The prediction and early warning of rockburst refers 
to the early warning of rockburst by on-site monitoring 

data. The most important feature of microseismic 
monitoring in rockburst prediction and early warning is 
that the corresponding relationship between monitoring 
information and rock state is established by locating 
the instability area, and then the characteristics of 
signal changes during a rockburst are obtained. This 
information can be used as a precursor to rockbursts and 
can be used to predict their occurrence effectively. Most 
rock burst processes are characterized by microseismic 
information precursors [109]. Most microseismic 
events and their energy evolution in the process of an 
instantaneous rock burst have self-similarity and fractal 
characteristics of time, energy, and space [110-112]. This 
indicates that the location and burst level of a direct 
rock burst can be predicted by microseismic monitoring 
information in most cases. Its wide use in various 
underground engineering applications also shows that it 
is an effective tool to reveal rock blasting mechanisms 
and predict rock blasting [113-116].

According to the degree of fracture development, 
the three-dimensional spatial pattern of the excavation 
site, the distribution pattern of the stress field, and 
the distribution of the high in-situ stress area are 
determined, so as to predict the location and the degree 
and probability of the potential rock burst. The risk 
level of a rock burst can be automatically determined on 
the basis of the existing microseismic monitoring data, 
which can reduce the bias caused by the subjectivity 
of data analysts to a certain extent. This makes the 
identification result of the rock burst risk level in the 
traffic tunnel more objective and automatic. Based on the 
research results of earthquake - microseismic - acoustic 
emission and monitoring practices, the principle of early 
warning based on microseismic ground stress activity 
is proposed [117-119]. The flowchart for the rock burst 
warning can be obtained from Fig. 10.

Fig. 10. Forecast and early warning process based on microseismic monitoring.



Peilong Yuan, et al.1010

(1) Time series - Abnormal numbers or energy 
statistics of microseismic events.

In time-quantity statistics, the sudden and significant 
increase in the number and energy of microseismic 
events in a certain period of time indicates that rock 
activity is unusually frequent. At this time, attention 
should be paid to the activity intensity of the surrounding 
rock to prevent a rock burst. The energy level and 
frequency of microseismic events in a certain region 
and a certain monitoring period are consistently higher 
than the average or increase rapidly without an obvious 
alternating release process, which can be defined as 
an active period and requires warning. Based on this 
principle, many scholars have innovatively diversified 
time series methods to predict and warn of rock bursts. 
Wang et al. used the state variables reconstructed from 
multiple time series as inputs for the LSSVR model 
to predict and validate the future values of variables 
in rock burst monitoring. The results showed that this 
method can accurately predict monitoring variables, 
thereby predicting the occurrence of rock bursts [120]; 
Based on the frequency of microseismic activity and 
the time series curve of energy release, Liang et al. 
determined that the type of rock burst sequence in the 
tunnel is foreshock, main shock, and aftershock [34].

(2) Spatial distribution and evolution - Microseismic 
events induced by continuous rock rupture.

Microseismicity occurs continuously along a certain 
zone within a certain area of the tunnel excavation 
envelope and forms a regular distribution. At this 
time, the possible tectonic activation within the rock 
will cause an increase in stress accumulation in the 
surrounding rock and lead to rock-blasting disasters. 
Within a certain time interval, the energy level and 
concentration of microseismic events in this region 
increase rapidly, which can be defined as an active 
area; that is, an early warning is needed. Based on 
the spatiotemporal evolution laws of microseismic 
events, scholars have conducted some research on rock 
burst prediction and warning. Yu et al. studied the 
autocorrelation of microseismic event time distribution 

during rockburst evolution by establishing a fractal 
calculation method and defining the rock burst intensity 
based on the time fractal dimension [121]. Lai et al. used 
microseismic monitoring instruments and stress sensor 
monitoring systems to analyze the spatiotemporal 
distribution characteristics of microseismic events 
during tunnel excavation, providing a reference for rock 
burst warning in underground engineering in complex 
spatial environments [122].

(3) Quantitative seismological parameters.
The performance record of ground stress was fitted 

according to the change in specific index parameters. 
Firstly, the characteristics of the surrounding stress are 
summarized. Secondly, it summarizes its changing rules 
and puts forward the corresponding warning threshold. 
The above three parameters have strong guiding 
significance for rockburst prediction and early warning. 
However, multi-parameter early warning is prone to 
conflict in field applications, resulting in out-of-focus 
or generalization. When high-energy events occur, 
microseismic sensors around the tunnel can effectively 
monitor high-energy microseismic waves. When a high-
energy microseismic event is detected within a certain 
period, positioning technology can analyze the location 
and type of rupture in a timely manner and, if necessary, 
predict the location of the rockburst to reduce the harm 
caused by the rockburst.

In the first stage, rockburst risk discrimination 
is mainly completed by researchers with highly 
specialized knowledge based on a comprehensive 
analysis of microseismic activity monitoring data. 
Affected by subjectivity, different personnel may come 
up with different discriminatory results. The energy 
index formed in the whole process of rockburst has great 
fluctuation and dispersion, and the warning accuracy 
cannot be guaranteed by observing its changing trend 
with the cumulative apparent volume manually. With the 
gradual quantification of rock blast risk discrimination 
indicators, it is possible to automatically discriminate 
the risk of a rock blast based on parameters. In the 
design of the burst risk level automatic discrimination 

Fig. 11. Visualization of features of convolutional and pooling layers [107].
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system, the parameters and set values selected by users 
can be classified, sorted, and aggregated according 
to the current microseismic monitoring data, and the 
risk level of a rock burst can be finally determined.  
The process of rock burst warning by using the change 
trend of cumulative apparent volume and energy index 
can be considered a time series classification. Three 
classification stages (rockburst burst stage, rockburst 
mutation stage, and rockburst disaster stage) of the 
whole process of rockburst hazard source formation 
can be obtained by inputting the cumulative apparent 
volume and energy index. With the rapid development 
of computer technology, various types of deep learning 
methods have been applied to time series classification  
[123-125]. Fig. 11 shows a multi-layer DCNN model that 
has been proven to be applicable for signal classification 
and recognition. It means that rockburst warning has 
been improved with the help of these methods, too. 
Among them, the neural networks commonly used for 
TCS are Multi-Layer Perceptron, CNN, and Echo State 
Network, while CNN proved to be widely used for 
classification tasks.

Applications

Since the establishment of the observation station in 
Germany in 1908, microseismic monitoring technology 
has been widely used in various kinds of tunnels. In 
China, it has also been widely used in the construction of 
the Bazhong-Shaanxi expressway, YeZhuping, Micang-
mountain tunnel, and Bayu tunnel in recent years. For 

example, in the MCS tunnel, 221 microseismic events 
were recorded by the microseismic monitoring system. 
These microseismic events reflect a series of chain 
rupture processes of rock in two strong rock bursts and 
successfully predict the location of rock bursts many 
times. Fig. 12 shows the arrangement of microseismic 
monitoring sensors in a railway tunnel in southern 
China, and the details of microseismic activity detected 
after a single rock burst are shown in Fig. 13. It can 
be seen from Fig. 13 that each rock burst has a similar 
pattern; that is, the occurrence of each rock burst is 
always accompanied by a large number of microseismic 
activities.

In the BY tunnel, the microseismic events on both 
sides show uneven distribution characteristics. With the 
shift in rockburst location, the characteristic parameters 
of microseismic event density, microseismic release 
energy, and cumulative apparent volume show an 
obvious shift in the core area of the rockburst. The signal 
processing system includes a server, an analog-to-digital 
converter (ADC), a seismic processor (SP), and a power 
supply (PS), which can collect elastic waves and convert 
them into visual signals. The MS monitoring platform 
can receive visual signals from the wireless bridge and 
transmit them to the control center through the Internet. 
The control center analyzes the visual signal conveyed 
by the processing system and finally obtains the 
rockburst information from the surrounding rock. Most 
microseismic monitoring methods used in traffic tunnels 
have similar structures and mechanisms to those used 
in BY tunnels and the railway tunnels shown above. 
Through the application of microseismic monitoring 

Fig. 12. Layout of the MS monitoring system in the deep tunnel in southwestern China [126].
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technology in the above tunnel, it can be found that the 
disadvantage of microseismic monitoring is that it is 
easy to be affected by adverse conditions and the range 
of sensor layout. Therefore, by optimizing the placement 
of sensors, the mass spectral events can be located 
quickly and accurately, and real information about the 
rock microfracture source can finally be obtained.

Conclusion

In the situation of rock blasting frequently in traffic 
tunnels under high ground stress, this paper introduces 
microseismic monitoring. The six parts of microseismic 
monitoring, including signal acquisition, recognition 
and classification, noise reduction, arrival detection, 
localization, and prediction and warning, are described 
in detail. The differences between the application of 
microseismic monitoring in traffic tunnels and in mining 
tunnels are discussed in each process of microseismic 
monitoring. Although a lot of research has been done 
on both rock burst and microseismic monitoring under 
conditions of high ground stress, most of it has not 
been done in combination. At present, microseismic 
monitoring is mainly used in mining tunnels, hydraulic 
tunnels, slope engineering, and other fields. There 
is still a lot of work to be done to apply microseismic 
monitoring to the excavation of transportation tunnels. 
With the rapid development of world technology, 
traffic tunnels are moving towards larger cross-
sections and longer distances. In addition, more diverse 
support methods during construction will make signal 
processing more difficult. These problems will bring 
trouble to the application of microseismic monitoring 
in traffic tunnels. Microseismic monitoring in traffic 
tunnels should pay more attention to the following 
aspects, such as improving the accuracy and credibility 

of microseismic images, improving instruments, 
enhancing the ability to deploy more sensors in tunnels 
to improve positioning accuracy, and deepening  
further research on data processing and positioning 
methods, including weak signal pickup. More 
importantly, the joint application of microseismic 
methods with other methods, the joint inversion of 
data, and the development of comprehensive data 
interpretation will better improve the monitoring 
accuracy of tunnels and the signal pickup rate. With 
the development of computers, artificial intelligence, 
and intelligent monitoring, reducing the harm of rock 
blasting will undoubtedly be effective.
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