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Abstract

Soil organic matter is an important indicator of soil health. It is a constituent of the ecological 
system that is vital to agricultural development and understanding of the global carbon cycle. The study 
used random forest regression, a machine learning algorithm, to identify relevant predictors of soil 
organic matter through the integration of field and Sentinel-2 derived vegetation indices and a selected 
reanalysis of climate data with topography. Three landcover types were purposefully delineated,  
and 72 soil samples were collected at a soil depth of 20 cm across the entire Cross River State, 
Nigeria. The samples were labeled and taken to the laboratory, where standard procedures were used 
 in extracting the SOM. 80% of the point data sets were used in model calibration, while 20% were 
used to validate the model. Model analysis revealed that environmental covariates of SOM (topography, 
rainfall, maximum air temperature, OSAVI, EVI, and NDVI) produced high prediction accuracy with 
lower uncertainty. The maximum plot SOM was estimated to be 7.20% with overall mean values of 2.61. 
The test data sets yielded a model accuracy of 0.85, an RMSE of 36.7, a relRMSE of 34.3%, and a bias 
of 3.7 t/ha. Based on this, the paper argues that the identified environmental covariates can be optimized 
for the effective management of SOM for sustained agricultural development. This is pertinent in areas 
with highly weathered soils characterized by low nutrients and poor crop yields. The SOM map of this 
study can be used as a baseline for subsequent monitoring and management of SOM in the study area.    

Keywords: agricultural development, environmental covariates, Cross River State, SOM, random forest
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Introduction

Soil organic matter is an important indicator of soil 
health. Although it constitutes only a small portion of 
the soil body, its relevance in the soil ecosystem and 
global carbon cycle cannot be ignored [1]. SOM is made 
up of plant and animal residues at different stages of 
decomposition [2]. Humus, a properly decomposed, 
dark-colored organic material in soils, is the most vital 
component of the soil complex. In addition to being an 
indicator of soil fertility, it plays a significant role in 
the physical, chemical, and biological state of the soil 
complex. Physically, SOM enhances water infiltration 
capacity, thereby promoting percolation and retention. 
In its chemical role, SOM boosts the cation exchange 
capacity of soils (i.e., the ability to attract and retain soil 
nutrients) and provides nutrients to the soil complex, 
while its biological role includes the stimulation of 
microbial activities in soils as well as improving 
soil organism diversity [3]. However, SOM content, 
variability, and rate of decomposition in any location 
and time are mediated by several factors across regions.  

In the tropics, where soils are highly weathered 
and characterized by kaolinitic content and low cation 
exchange capacity, the content and spatial distribution 
of SOM are controlled by soil type, topography, land 
use, and the prevailing climate, among others [2]. It is 
imperative to note that SOM in the tropics decays faster 
compared to other regions of the world [4]. Tropical SOM 
degradation is attributable to increased soil erosion, loss 
of litter influx after vegetal canopy destruction, and 
enhanced decomposition and nutrient mineralization 
rates after deforestation [1]. The destruction of SOM 
has significant environmental consequences, hence 
the need to maintain a steady state, i.e., the rate of its 
destruction should be equal to the rate of its addition to 
the soil complex, which in turn will boost agricultural 
production [2].  

Significantly, to achieve agricultural development and 
meet the global goal of keeping the air temperature below 
2ºC, the retention and sequestration of SOM are very 
pertinent. More so, soil structure stability, agricultural 
productivity, and carbon sequestration depend on the 
status of the  SOM of the region [5]. As a storehouse of 
soil nutrients, its role as a ‘revolving nutrient fund’ must 
be sustained through litter inputs. This is pertinent to 
agricultural development in tropical regions where the 
livelihoods of the majority of the population are nature-
dependent [6]. In Africa, it is estimated that more than 
50 percent of the population’s income comes from 
agriculture [7]. And recent statistics for the region in 
this sector are anything but gloomy. Estimates indicate 
that about 60% of the population of Africa experiences 
food insecurity [ibid], which is exacerbated by extreme 
weather events [8]. It is in respect of this that soil organic 
matter information becomes pertinent, especially for 
precision agricultural development.

Because of this, the goal of this study is to determine 
the spatial distribution of soil organic matter over 

the Cross River State (CRS) region as a prelude to 
precision agricultural development. Specifically, the 
study aimed to achieve the following: 1). To ascertain 
the environmental covariates constraining the spatial 
distribution of soil organic matter in the Cross River 
State region and 2) to determine the role of soil organic 
mapping in precision agricultural development in the 
study area.                 

Materials and Methods

Study Area

The study was carried out in the CRS of southeastern 
Nigeria. It has a total land area of 20,156 km2. And is 
made of varying terrain characteristics, with mountain 
ranges peaking at 1800 m (5, 936 ft.) in the extreme 
north and 103 m above sea level in the southern part 
of the state [9]. The CRS is located at latitude 40 34I  

59.9911 N and longitude 80 24I 59.9911 E. It is bordered by 
Benue State in the north, Akwa Ibom, Ebonyi, and Abia 
states to the west, and the Atlantic Ocean to the south.  
The study area contains various land cover types, 
including mangroves, swamps,and tropical rainforests, 
which are common in the southern and central parts 
of the region, and montane vegetation and savanna 
woodlands, which are prevalent in the northern portion 
of the study area [9]. 

Rainfall in Cross River State has two seasons with 
varying durations in the three agroecological zones: 
the northern (NAZ), southern (SAZ), and central 
agroecological zones (CAZ). In the SAZ, the monsoon 
tropical climate is common, with a mean rainfall of 
3500 mm, which sometimes reaches 4000 mm around 
the Oban Massif [8]. The climate features of this area 
match the Tropical Monsoon (Am) classification scheme 
of Koppen [10]. The average yearly air temperature of 
the zone is 27ºC with little fluctuations throughout 
the year, and humidity is between 78% and 91% [11].  
The mean annual rainfall in the CAZ varies from  
2300 mm to 3000 mm, with the mean annual air 
temperature ranging from 26.9ºC to 30ºC, and the 
humidity in most parts of the year is about 68% [8].  
In the NAZ, the savanna ecosystem is prevalent, with  
a mean annual rainfall of 1120 mm and an air 
temperature range of 15 to 30ºC [12]. Two climate 
seasons are observed in the NAZ: the rainy season lasts 
for about eight months and the harmattan lasts for about 
four months, though these vary yearly. In the montane 
ecoregion of the Obanliku Mountains within the NAZ, 
climatic conditions are markedly different from other 
parts of the region. Air temperature has a mean annual 
range of 4ºC to 10ºC. The terrain is rugged, with hilly 
escarpments, steep valleys, and mountains that peaked 
at about 1800 sq. km. above sea level, with an elongation 
into the southwest region of Cameroons [13].



Predicting Environmental Covariates of Soil... 3

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Au
th

or
 C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y 

• A
ut

ho
r C

op
y

Field and Laboratory Procedures 

A land cover map (Fig. 1) developed by the Cross 
River State Forestry Commission [14] was used in 
establishing the plots for soil sample collection. Based 
on the CRSFC map, the study area was classified into 
the categories of Undisturbed Forest (UF), Disturbed 
Forest (DF), and croplands, following Gautam and 
Mandal’s [15] delineation. Overall, 29, 18, and 25 
samples were purposely distributed across the CRS in 
undisturbed, disturbed, and cropland areas, respectively. 
The locations of each plot in the field were determined 
using the Garmin etrex GPS [16]. Access to each of the 
plots was made possible through park rangers or the 
local community [17]. Alternative plots were laid when 
it became impossible to access the predetermined plot,  
a similar practice by REDD+ [18]. 

Soil samples were collected within each 20 m plot.  
A soil screw auger 30 cm long and 3.5 cm in diameter 
was used to collect composite soil samples along the 
diagonal of each plot. The spacing of soil samples 
was 6.7, 6.7, and 6.6 meters along the diagonal of each 
plot, with a total of 3 soil samples collected within 
each plot. Each sample was then labeled, parcelled, 
and transported safely to the laboratory for analysis of 
organic carbon using the modified Walkley and Black 
wet oxidation methods [19]. The organic matter in the 
soil samples was then obtained using the formula % 
organic matter in soil = % organic carbon x 1.729.  

Predicting Environmental Covariates 
of Soil Organic Carbon

Sentinel 2 (S2) is a wide-swath, high-resolution, 
multispectral imager made up of Sentinel-2A and 
Sentinel-2B. Sentinel-2A was launched in June 2015, 
and Sentinel-2B was launched in 2017. Sentinel-2 is 
made up of 13 spectral bands located from the visible 
to the shortwave infrared with spatial resolutions of 10 
m (red, green, blue, NIR), 20 m (red edge and short-
wave infrared bands), and 60 m (atmospheric bands). 
Top-of-atmosphere (TOA) reflectance was converted to 
top-of-canopy (TOC) reflectance [20]. The images were 
sub-set and mosaicked to produce a single image for 
the study area [21]. The images used in the study were 
downloaded in November 2022, where cloud cover did 
not have a significant influence on the image quality. 

A range of environmental covariates were used in 
the modeling protocol. These included the Optimized 
Soil Adjusted Vegetation Index (OSAVI) from Baret et 
al. [22], the Modified Soil Adjusted Vegetation Index 
(MSAVI) from Qi et al. [23], the Atmospherically 
Resistance Vegetation Index (ARVI) [24], the Modified 
Red Edge Normalized Difference Vegetation Index 
(MRENDVI) based [25], the Red Edge Normalized 
Difference Vegetation Index (RENDVI) from Giytelson 
and Merzhynak [26], the modified red edge simple ratio 
[27], as well as the Normalized Difference Vegetation 
Index (NDVI) and Enhance Vegetation Index (EVI2). 

Fig. 1. Map of Cross River State with an insert location in West Africa and Nigeria with sample plots overlaid (black dots). Source: Culled 
from the Cross River State Forestry Commission (2019) [14].
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In addition, topography also has an important influence 
on soil organic carbon [28], hence the 30 m Digital 
Elevation Model (DEM) from the Shuttle Radar 
Topography Mission (SRTM) was used in the study [21]. 

 In addition, the ERA5 and CHIRPS gridded rainfall 
and air temperature time-series data for the last 35 years 
per pixel were used to assess climate variability over the 
study area. All images used in this study were resampled 
to 20 m resolution using the nearest neighborhood 
method. This resampling method was used because 
it is known to be computationally efficient and often 
maintains the image pixel values [29]. The resampling 
was required to ensure the plot size matched with the 
pixel size at the point of SOM extraction.    

Random Forest (RF)  
a Machine-Learning Algorithm  

RF is used in this study to spatially extrapolate the 
plot-level estimates of SOM to the whole of the CRS. 
It is a nonparametric multivariate algorithm developed 
as an extension of the decision trees to improve 
prediction accuracy and reduce overfitting [30]. As a 
supervised machine learning algorithm, it uses several 
decision trees on subsets of predictor datasets [31]. It is 
characterized by a tree-like sequence of decision nodes 
that splits into different branches continuously until it 
reaches the tree leaf. At this point, the algorithm has 
reached the prediction of a decision [30]. Some of the 
advantages of RF over traditional statistical models 
include its ability to handle many explanatory variables 
at a time, it can manipulate very complex interwoven 
sets of variables, it is not affected by highly covariate 
variables; hence it does not require data transformation, 
and most importantly, it reduces overfitting with the 
right number of subsets of data [32]. 

The optimal features for a robust model can be 
reached through the process of feature selection. 
Random Forest has an in-built mechanism that checks 
for important variables in the model [33]. Feature 
selection provides an opportunity for the less relevant 
features to be removed, thereby enhancing the model 
performance and generalizing the result [34]. In this 
study, the recursive feature selection method was used 
[35] in selecting the relevant environmental variables for 
SOM prediction.

Accuracy Assessment

Three indices coefficient of determination (R2), root 
mean square error (RMSE), and relative mean square 
error (relrmse) were used to measure the accuracy of 
the predicted SOM content map [24]. All the indices 
mentioned are computed based on the differences 
between the predicted and observed SOM content values 
at the validation soil sample locations.

  (1)

  (2)

Where yi is the predicted value series,  is the 
observed value series, n is the sample size, and Ῡ is the 
average value of the observed series.

Results

Descriptive Analysis of Plot-Derived Soil 
Organic Matter in the Cross River Region

Table 1 is the summary analysis of the soil organic 
matter data obtained in the field across three land cover 
types: undisturbed, disturbed, and crop fields in the 
CRS ecological region. From the table, the minimum 
and maximum values of SOM in undisturbed landcover 
are 1.80 and 7.20, respectively, while in disturbed and 
cropland land cover, the maximum and minimum values 
are 2.10 and 5, and 1.20 and 3.80, respectively. More 
so, the mean values of SOM in the three land cover 
types are 3.49, 3.16, and 2.11, respectively with standard 
deviations of 1.43, 0.82, and 0.60 for undisturbed, 
disturbed, and crop land cover, respectively. The table 
also indicates that the coefficient of variation for the 
three land cover types is 40.97%, 25.94%, and 28.43% 
for undisturbed, disturbed, and cropland land cover 
types, respectively.    

Table 1. Descriptive statistics of plot soil organic matter collected across the delineated land cover types in Cross River State, Nigeria.

Land cover types N0. Minimum Maximum Mean Std. deviation Variance CV (%)

Undisturbed LCT 29 1.80 7.20 3.49 1.43 2.06 40.97

Disturbed LCT 18 2.10 5.00 3.16 0.82 0.67 25.94

Cropland LCT 25 1.20 3.80 2.11 0.60 0.36 28.43
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vegetation indices. Using the mean increasing node 
purity, the figure indicates that OSAVI was the most 
important variable in predicting SOM with the highest 
node purity. The other five variables used in predicting 
SOM are taken to be the Otimizsed Soil Vegetation 
Index (OSAVI), mean annual maximum air temperature, 
Enhanced Vegetation Index (EVI), rainfall, topography, 
and the Normalized Difference Vegetation Index 
(NDVI).        

More so, Fig. 3 is the scatterplot derived from 
important features from the test model. From the 
figure, we can observe that the model accuracy is 85% 

Environmental Covariates Constrain 
the Spatial Distribution of Soil Organic 

Matter in the Study Area

The spatial distribution of soil organic matter and 
any other geographic phenomena in space and time is 
fundamental to environmental studies. When we know 
where, how, and why, we can effectively provide the 
required policies for its utilization and/or management. 
Given this, Fig. 2 shows the ranking of important 
features in the prediction of soil organic matter in the 
CRS of Nigeria, considering topography, climate, and 

Fig. 2. All environmental covariates (topography, climate, and vegetation index variables) used to predict SOM using Random Forest, 
ranked from highest to lowest node purity. The model configuration uses all these 13 covariates to predict SOM.

Fig. 3. Evaluation of the Random Forest predicted SOM over the 22 testing forest inventory plots using important variables.
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with an RMSE of 36.7 t/ha and an uncertainty of 34%.  
This implies that 85% of the predicted soil organic 
matter did not occur by chance. The spatial distribution 
of the predicted SOM over the CRS is presented  
in Fig. 4. From the figure, higher values of SOM are 
recorded in the extreme Northwest ecological zone, 
while other parts of the study area have high values 
sparingly dotted across the landscape. Lower values 
of SOM occur more in the central agroecological zone 
and the far north and northeast enclaves. The areas with 
seemingly high SOM distribution coincide with areas of 
dense forest cover.    

Discussion

Nigeria, like any other tropical country, is beseeched 
by a plethora of socio-environmental challenges, 
including an increasing population without the attendant 
capacity to meet the food demand, high incidences of 
climate change-linked problems like recurrent floods, 
land scarification, farmer/Fulani conflicts, and low 
crop yields, among others. Mapping the distribution of 
soil organic matter provides a potential opportunity to 
efficiently use the soil for agricultural development as 
well as other soil-derived ecosystem services [36, 37]. 
With regards to land use change, Global Forest Watch 
[38] statistics indicate that in the last 20 years, Cross 
River State lost 30% of its humid tropical forest, which 

is equivalent to 67.4 metric tons of CO2e emisions. The 
huge disappearance of tree cover in the area is driven 
by agricultural expansion and illegal logging activities 
[39], and these invariably translate to soil organic matter 
lost; hence, the geospatial assessment of SOM contents 
and distribution becomes a viable option for land cover 
restoration.  

In addition, the assessment of soil organic matter 
content will help boost agricultural production in 
the region and subsequently aid in gathering the 
required data geared towards meeting the monitoring, 
reporting, and verification goals of the UNREDD 
project. This is particularly pertinent given that topsoil 
has the largest carbon sequestration potential in the 
tropics [40]. Because of this, it is appropriate that we 
understand factors that are relevant in predicting the 
spatial distribution of SOM as a prelude to agricultural 
development and mitigating the effects of increased 
warming in Nigeria, especially in Cross River State. 

Factors of soil formation such as climate, time, 
parent materials, organisms, and terrain are not 
static but can be fairly uniform over space; however, 
variability in soil characteristics is mediated by the 
inherent forming factors [41, 42]. The conditions of 
these intrinsic and extrinsic factors are key to SOM 
stability. In the tropics, where soils are inherently 
poor in nutrients, highly weathered, and vulnerable to 
climate change, understanding the distribution patterns 
of these factors is pertinent to the effective management 

Fig. 4. a,b) Sample points (black dots) across land cover types and the spatial distribution of SOM as derived from the top five important 
variables (Fig. 2) in Cross River State, Nigeria, at 20 m spatial resolution.  

a)       b)
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of SOM [43]. The need to generate this soil information 
is further heightened with the aim of meeting the Paris 
Agreement goal of keeping air temperatures below pre-
industrial levels [44]. The cost of field data collection on 
a large scale and subsequent laboratory analysis of soil 
physiochemical parameters is prohibitive, especially for 
African researchers who remain underfunded. Therefore, 
reliance on digital mapping through the integration 
of factors of soil formation with multispectral derived 
indices in predicting soil nutrients with sophisticated 
nonlinear statistical tools (like a random forest machine 
learning algorithm) can boost model accuracy [45, 46]. 
However, when the model performance is low, Lieb 
et al. [47] attribute it to one or more of the following 
reasons: (a). poor relation to the environmental predictor 
variables, (b). extreme local variation due to unknown 
or random effects, (c). the collection of data spans a 
very small interval in the total range of the response 
variable. In general, model accuracy can be improved 
by removing redundant variables. The removal of 
less important variables from the model helps with 
computational efficiency, improves model accuracy with 
the right combination of variables, makes overfitting 
minimal, and makes data interpretation less tasking [33, 
48].  

Predicting Environmental Covariates of 
SOM in Tropical Cross River State

Digital mapping of spatial soil attributes can now 
be carried out effectively with the availability of 
environmental covariates at the fine spatial resolution, 
given that direct measurements are limited in scope, 
labor-intensive, and expensive to execute [49, 50]. This 
technique involves the prediction of soil quality as a 
function of a suite of environmental covariates, which 
include soil properties, topographic features, land use 
types, and proxies of vegetation covariates [51]. In fact, 
image-based soil mapping has shown strong potential 
unlike its traditional counterpart [52]. On the strength of 
this, estimating the spatial distribution and soil fertility 
status of soils using satellite derived vegetation indices 
as proxies of soil condition, especially in the tropics, 
where soils are known to be highly weathered, is 
pertinent to agronomic and environmental management 
[52]. Leveraging these technologies and tools, we 
ordered the essential variables based on their relevance 
in predicting SOM in the region using Random Forest, a 
machine-learning algorithm (Fig. 2). Guided by the fact 
that predictor-response relationships are significantly 
mediated by landscape and coverage [43], 72 point data 
were collected, and 80 percent of this data was used for 
model calibration while the remaining 20% was used in 
model testing. 

Model analysis revealed that OSAVI, mean annual 
air temperature, rainfall, topography, and NDVI were 
the topmost important environmental covariates in 
predicting SOM in the study area, with a model accuracy 
of 85%, an RMSE of 36.7 t/ha, a relRMSE of 34.3%, and 

a bias of 3.7 t/ha. This analysis is in consonance with a 
recent study by Chala and Ray [53], where all four tested 
machine learning algorithms consistently produced high 
model accuracy. Similarly, extant studies [43, 48] also 
confirmed that these variables (temperature, rainfall, 
topography, and NDVI) are relevant in predicting soil 
properties such as SOM. However, the estimation of soil 
properties based on spectral signatures is not without 
some challenges. Hengl et al. [43] advised that because 
of the potential intrusion of photosynthetic and non-
photosynthetic vegetation cover and the difference in 
soil moisture or surface roughness in signal quality 
when estimating soil properties, there is a need to 
integrate spectral-based signatures with the soil forming 
factors in model training. On account of this, Hengl 
et al. [43] used Sentinel-2 sensor-derived vegetation 
indices combined with parent materials, landform 
parameters, and climatic variables to predict selected 
soil properties with SOM prediction, resulting in the 
goodness of fit of the model. More so, Hu et al. [54], 
using spectral-derived vegetation indices (VIs) and soil 
forming factors, identified topographic elements such 
as elevation, aspects, slope, and plane curvature, and 
cross-sectional curvature and topographic health index 
as predictors of SOM in a subtropical region. 

In modeling predictors of soil organic carbon, 
Sreenivas et al. [55] identified NDVI and land cover 
types as the leading predictors of soil organic carbon. 
In another study, Ramiferiarivo et al. [56] identified 
elevation, precipitation, temperature, and vegetation as 
leading predictors of soil organic matter in Madagascar, 
while Were et al. [57] found that elevation, along with 
other data such as silt content and satellite band data, 
were the main predictors of soil organic matter in 
tropical regions. Similarly, Wang et al. [45] reported that 
organic matter in the tropics increases with precipitation, 
elevation, and lower temperatures. Wang’s findings are 
in line with the result of this study, as climate variables, 
elevation, and vegetation data were identified as having 
significant control over the spatial distribution of soil 
organic matter in Cross River State, Nigeria. Taminru et 
al. [58] recently compared the capacity of random forest 
and ordinary kriging in predicting soil properties in 
the tropical forests of Ethiopia. The result revealed that 
random forest recorded higher prediction accuracy and 
a lower error margin, with the digital elevation model 
and NDVI being the most important variables in the 
prediction and understanding of the spatial distribution 
of soil organic matter in the study area.

Though regional, spatially referenced soil properties 
maps exist across the region [43, 50, 59], these studies 
either relied largely on legacy data, used inadequate 
point data, established a bias field sample locations, 
relied only on conventional survey methods, presented 
fragmented soil information, and used coarse spatial 
resolution imageries, and is not detailed enough to 
reveal the variability of soil properties at farm level.  
The calibration of models with legacy soil data may 
reduce model accuracy and may not reflect the landscape 
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conditions as they exist in space and time [60], reducing 
the reliability of such soil information. But in this 
current study, we relied on field data collected across 
the study region for model calibration, and the resulting 
SOM map is an outcome of a robust model with a fine 
spatial resolution (Fig. 4b), with detailed variability at 
the farm level.

In terms of the spatial distribution of soil organic 
matter based on the land cover types, the study indicates 
that forest land cover contains more organic matter 
compared to disturbed and cultivated fields (Table 1). 
More so, qualitative analysis of the spatial distribution 
of SOM (Fig. 2) indicates that the distribution of 
SOM seems to follow the forest cover pattern with 
few exceptions. For instance, Fig. 2 revealed that 
more SOM is recorded in the extreme northeast and 
southeast parts of the study area, except for the same 
range of SOM found in the northwestern part of the 
study area. Though the northwestern part of the study 
area is predominantly made up of cultivated lands and 
settlements, the pockets of high SOM in these areas may 
have a history of anthropogenic accumulation of farm 
residues, decayed wood, or buried biomass. A similar 
observation was made by Venter et al. [35] in South 
Africa. It is imperative to note that vegetation is a strong 
determinant of the amount and vertical distribution of 
organic matter in soils [61].

However, the lower values of organic matter 
observed in the cultivated fields may be caused by 
higher oxidation of organic matter and the destruction or 
removal of crop residues, which aligns with the studies 
of Nabiollahi et al. [61] and Lal et al. [62]. Continuous 
cultivation leads to organic matter depletion; hence, the 
small quantities of SOM in cultivated fields reported in 
this study are expected. Sandy soils and loamy sandy 
soils are known to deplete organic matter at rates  
of 4.7 and 2%, respectively, yearly, in the West African 
region [63]. This is expected as land cultivation leads 
to a rapid rate of organic residue decomposition.  
On a global scale, it is estimated that in the last 12, 
000 years, land use change resulting from cropping 
and grazing caused the loss of 116 petagram of carbon 
in the top 2 m of the soil of savannas, croplands, and 
grasslands; hence, the need for wise utilization of land 
resources, especially in Africa, where hunger remains  
a rift [7].

Digital Soil Mapping for Precision Agriculture

Understanding the spatial distribution and variability 
of soil attributes over the field is a prerequisite for 
environmental management and the effective use of 
resources [52]. This is pertinent in a climate (such as 
Africa) where diverse challenges intermingle to clock 
the wheel of development. Among the panoply of crises 
confronting Africa, food shortage and environmental 
crises of climate change origin remain daunting. It has 
been reported that cereal grain yield in Africa grows 
at 1% while the population of the region increases at 

3%. This is compounded by African arable land being 
battered at 16% per year [64], hence the widening 
food gap. Therefore, sustainable farming and effective 
management of the soil are required to meet the food 
demand of the teaming population [7], and with digital 
mapping for precision agricultural development and 
climate change mitigation and resilience, this plethora of 
problems can be reduced if not eliminated [43].

Assessment of soil organic matter and, by extension, 
soil organic carbon, can achieve the twin objectives 
of climate change mitigation and in reducing food 
insecurity in sub-Saharan Africa. This is within the 
clarion call of the International ‘4 per 1000 Initiative: 
Soils for Food Security and Climate Change’ which 
places a high premium on agricultural soil assessment 
at different geospatial levels as a fulcrum of climate 
change mitigation and improved food security [65]. 
The initiative is anchored on the understanding that 
the assessment of soil organic matter will aid natural 
resource managers in deploying resources to improve 
areas of SOM depletion while sustainably managing 
zones of adequate content. This is imperative, as 
sustaining SOM in the environment in an adequate 
proportion will buffer the soil against soil erosion, 
improve soil water content, improve soil fertility status, 
and improve soil biodiversity [66]. 

Extant literature [67-69] confirmed that improved 
yields can be achieved with precision agriculture, but 
most African farmers do not carry out soil surveys 
before the cultivation of crops. It is a fact that tropical 
soils are poor in fertility, and poor management of 
soils leads to nutrient depletion. Adverse weather and 
climate events remain major threats to food security in 
the region [70]. In fact, African nations are not on track 
to meeting the sustainable development goals by 2030, 
and with only 7 harvest years left until the dateline 
for meeting the MGDs [71], the stakes are higher than 
ever, hence transforming the agricultural sector has 
become an urgent matter. The transformation can be 
achieved through digital mapping of SOM as a prelude 
to sustainable agricultural development to enhance food 
crop production in the region. 

Conclusion 

The projected climate scenario indicates that the 
agricultural sector will be hit, especially in Africa, 
where the majority of the population depends on rain-
fed agriculture. And with the prognosis indicating that 
the world population will reach 8.7 billion by 2030 and 
9.7 billion by 2050, food production will most likely 
fall short of demand [7]. More so, the growth model 
projects that Africa’s current 1.3 billion people will 
double to 2.5 billion by 2050 and has the potential to 
maintain this path [71]. Estimates further revealed that 
21% of the continent’s population is food insecure [7] 
and remains highly vulnerable to climate change and 
the associated socioeconomic malaise [71]. The brunt 
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of these challenges has been coined the ‘perfect storm’ 
[ibid]. However, the aftermath of these crises can partly 
be managed through effective planning [72].

This study recognized that soil organic matter 
plays a significant role in the natural processes that 
determine nutrients and water availability for crop 
production, where the majority of farmers depend 
on rainfed systems. It must be stated that SOM may 
not be the limiting factor in crop production as other 
environmental predictors have modulating roles; hence, 
farmers must identify these factors before adopting any 
management strategy.

Increased food production in the Cross River region 
is an objective that requires a holistic approach, putting 
in place the best management strategy that ensures 
the smooth integration of human and natural capital 
is attained with minimal negative impacts on the 
environment. We need to stop unsustainable land use 
practices and the old ways of doing things to adopt new 
and proven approaches to farming. Stakeholders need 
to put in place programs that will enlighten indigenous 
farmers on how best to use the soils and other natural 
resources within the farm scale to attain sustainable 
food production.  
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