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Abstract

The article deals with at-site flood frequency analysis for different gauging stations of the Chenab 
River in Pakistan. The study aimed at recommending the most suitable probability distribution  
and efficient method of parameter estimation for each gauging site. Generalized extreme value, 
generalized logistic, Gumbel, generalized Pareto, and reverse Gumbel probability models are fitted 
to the annual peak flow/discharge. For each gauging site, the parameters of these distributions are 
estimated through L-moments, maximum likelihood, least squares, weighted least squares, and relative 
least squares methods. For each site, the probability models with a particular estimation method  
are ranked on the basis of goodness-of-tests and accuracy measures, and then the most suitable pair  
of model and estimation method is identified through a total rank. The results indicate that  
the generalized Pareto distribution is the best fit for Marala, Khanki, Qadirabad, and Punjnad, while 
the generalized extreme value distribution is the most suited for the Trimmu gauging site. As far as  
the estimation method is concerned, least squares and weighted least squares methods are more accurate 
for most of the gauging sites. Finally, for each gauging site, the best-suited probability model is used to 
estimate the annual peak flow and to construct associated confidence intervals for different return years.

Keywords: generalized extreme value, generalized logistic, generalized pareto, maximum likelihood, 
reverse Gumbel distribution
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Introduction

Floods are the most destructive natural catastrophes, 
leading to losses in human lives, infrastructure, crop 
yields, and industrial production. It can also seriously 
affect the environment and the social lives of people 
in terms of electrical damages and risks, contaminated 
water, sanitary hazards, problems in drainage, and 
destruction of roads and other communication networks. 
A flood is a situation when water overflows from  
a watercourse (river, lake, or stream channel) and 
comes to the land, which is usually dry [1-4]. The main 
reasons behind floods are heavy rains, melting glaciers, 
breakage in reservoirs used for water storage, and  
a lack of river channels to effectively convey the excess 
water [5-7]. Floods are natural phenomena occurring 
at irregular intervals of time. The flood frequency 
analysis is used with the objective of predicting the 
recurrence of flood levels for different return periods. 
Such prediction of floods is important for certain 
planning at the government and country level, like the 
construction of water reservoirs, spillways, bridges, 
canals, and culverts. It is also important to plan disaster 
management activities (including protection of human 
lives, assets, and food security) for any possible hazard 
in the future. Flood frequency can be carried out with 
different approaches, like the California method, the 
Hazen method, and Gumbel’s method [1]. The flood 
analysis can be carried out at the country, regional, or 
site level. At-site flood frequency analysis is the most 
appropriate, effective, and simple way to predict flood 
recurrence at a particular gauging station [5, 6, 8-11].

The choice of the probability model blended with 
an appropriate estimation strategy plays a vital role in 
the modeling of flood data. Each distribution has its 
own advantages and disadvantages in describing flood 
data. There can be different probability distributions 
with different parameter estimation methods suitable 
for modeling maximum water flow data from different 
gauging sites. In the literature concerning at-site flood 
frequency analysis, different probability distributions 
like Generalized Extreme Value (GEV), GEV type-1, 
GEV type-2, normal, generalized normal, two-parameter 
lognormal, three-parameter lognormal, two-parameter 
gamma, three-parameter gamma, Pearson type-III, 
Gumbel, reverse Gumbel, exponential, generalized 
logistic, four-parameter Wakeby, five-parameter Wakeby, 
and generalized Pareto have been applied for flood 
frequency analysis of different rivers in different 
countries [1, 5, 6, 12-18]. A brief review can be seen in 
some studies [19-21]. 

Following the findings of many studies for different 
rivers in the world, we have used Generalized Logistic 
(GLO), Generalized Extreme Value (GEV), Gumbel 
(GUM), Generalized Pareto (GPD), and Reverse Gumbel 
(REV.GUM) distributions for at-site modeling of annual 
maximum flood data at 5 sites of the Chenab River. 
Some of these probability models were also used by 
Ahmad et al. [22] for at-site analysis of many gauging 

sites, including those of the Chenab River, but with 
relatively smaller sequences of peak flow data.

Several estimation methods are available for 
parameter estimation of probability models used for 
flood frequency analysis. In the present study, we have 
applied L-Moments (LM), Maximum Likelihood (ML), 
Least Squares (LS), Weighted Least Squares (WLS), and 
Relative Least Squares (RLS) methods for estimating 
the parameters of considered probability distributions. 

The performance of each probability distribution 
estimated with a particular estimation method is 
assessed based on different goodness-of-fit tests and 
accuracy measures.

The present study is focused on at-site flood 
frequency analysis of the Chenab River, with the prime 
objective of identifying the most suitable probability 
distribution with a parameter estimation method for 
modeling the annual maximum discharge data of 
different gauging sites of the Chenab River. After 
identifying the most appropriate probability distribution 
and estimation method for each gauging station, the 
maximum annual peak flow for different return periods 
with a specific non-exceedance probability has been 
estimated. 

The rest of the article is structured as follows: 
Section 2 provides a brief description of the Chenab 
River and the data used in the current work. Section 
3 describes the candidate probability models and 
parameter estimation methods. Section 4 presents and 
discusses the results obtained by applying different 
probability distributions with estimation methods at 
different gauging sites. Finally, conclusions drawn from 
the study are presented in Section 5.

Data and Gauging Sites

The Chenab River is one of the major rivers in 
Punjab Province, Pakistan. The river flows from 
northeast to southeast directions and enters Pakistan’s 
Punjab province from Indian Punjab. It measures 960 
Km with an approximate enactment area of 29000 km2. 
Its average annual flow is 12.38 MAF [23]. A map of the 
Chenab River showing the considered gauging sites is 
reproduced from Magsi and Atif [24] in Fig. 1. The data 
have been collected from the Hydrological Directorate 
of Discharge and Flood Zone, Lahore. The range of the 
data is different for different gauging sites, varying from 
48 to 90 years. The longitude, latitude, elevation, and 
length of the data series for each gauging site are given 
in Table 1. The maximum annual flow at each gauging 
site is graphically represented in the form of time plots 
in Fig. 2.

Materials and Methods

The choice of a probability distribution and 
estimation method is vital in any at-site flood 
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frequency analysis. In the following sub-section, a brief 
introduction of candidate probability distributions 
and estimation methods used in the current study is 
provided.

Candidate Probability Distributions

The choice of a suitable probability distribution 
is vital in any at-site flood frequency analysis. Many 
probability distributions have been used for flood 
frequency analysis in different countries. For the analysis 
of five gauging sites of the Chenab River, we have used 
Generalized Logistic (GLO), Generalized Extreme Value 
(GEV), Gumbel (GUM), Generalized Pareto (GPD), and 
reverse Gumbel (REV.GUM) probability distributions. 
These distributions are applied and found plausible for 
at-site flood frequency analysis of different rivers and 
also for other environmental variables [14, 25-30]. 

L-Moments (LM) Method

Introduced by Hosking [31, 32], the L-moments are 
linear combinations of probability-weighted moments 
(PWM). Being the direct measure of the scale and shape 
of the data, L-moments are more suitable and convenient 
than probability-weighted moments. However, it is 
common practice to compute L-moments using PWM [5, 
33, 34]. Theoretically, the rth PWM βr, for a probability 
distribution with a quantile function φ (F), is defined as:

 

1
r

0

 (F) F dF  r=0, 1, 2,... rβ φ= ∫
 

Fig. 1. A map showing gauging sites of the Chenab Rive (Source: 
Magsi and Atif, 2012).

Gauging 
site Time period Longitude Latitude Elevation 

(meter)

Marala 1946-2017 74.4643 32.6723 234 

Khanki 1944-2017 73.9687 32.3988 219  

Qadirabad 1970-2017 73.6863 32.3193 205  

Trimmu 1928-2017 72.1462 31.1447 150  

Punjnad 1948-2017 71.0198 29.3464 1402 

Table 1. Brief of gauging sites.

Fig. 2. Time plots of maximum annual discharge at different gauging sites.
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For sample data, the first four PWMs are computed 
as: 
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Consequently, the first four L-moments are computed 
by the following relationships,

1 0λ β= , 2 1 02λ β β= − , 3 2 1 06 6λ β β β= − + ,

4 3 2 1 020 30 12λ β β β β= − + − .

Hosking [32] defined the coefficients of variation (τ2), 
skewness (τ3) and kurtosis (τ4) in terms of ratios of the 
L-moments as:
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Just like the method of moments, parameter 
estimation through the L-moments approach is done by 
solving a system of simultaneous equations obtained 
by comparing theoretical and corresponding sample 
L-moments. The LM method has gained much attention 
recently due to its computational simplicity [5, 6, 12, 35].  

Maximum Likelihood (ML) Method

Maximum Likelihood (ML) is a widely applied 
estimation method. It gives those values as parameter 
estimates for which the likelihood, or log-likelihood, 
attains its maximum. Let us have a random sample of n 
observations x1, x2,... xn from probability density function 
f(xi|θ) where θ is the vector of unknown parameters. Let 
the likelihood and log-likelihood of n independent 
observations are 
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θ is the value for which l(θ) attains its maximum. The 
maximization is achieved by equating the derivative of 
l(θ) with respect to θ to zero. If this process does not 
yield a closed-form solution, then maximization can be 
achieved numerically through an optimization 
technique. For the current work, we have applied 
algorithms available in R-language [36] for numerical 
optimization. 

Least Squares Method

The Least Squares (LS) method is commonly used 
for parameter estimation in probability models [37-
39]. It is based on minimizing the following objective 
function: 
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where F(xi) is the theoretical CDF of the corresponding 
probability distribution while i/(n+1) is the sample or 
observed CDF of the data. This can be done by solving 
the system of equations obtained by taking derivatives of 
the above function with respect to unknown parameters. 
The details can be seen in Ali [37]. For complex 
functions, the parameter estimates can be obtained by  
a suitable optimization algorithm. 

Weighted Least Squares Method

As proposed by Bergman [40], Weighted Least 
Squares (WLS) is a variant of the LS method. Instead 
of identical weights for all observations, WLS uses 
different weights for different observations. Specifically, 
in the WLS method, parameter estimates are obtained 
by minimizing the following function:
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Following different studies [41-44], we have used 
weight function as: 
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Relative Least Squares Method

Proposed by Pablo and Bruce [45], Relative Least 
Squares (RLS) is another variant of the LS method. 
Instead of squared errors (as in the LS method), the 
RLS method is based on minimizing the squared 
relative errors. Recently, RLS is reported to be a 
better performer, in the case of some two-parameter 
probability distributions [46-48]. Parameter estimates 
through the RLS method can be obtained by minimizing 
the following function:
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The quantile xT can be estimated by putting F in 
the quantile function of the corresponding probability 
distribution. If the quantile function of a probability 
distribution cannot be expressed in closed form, then 
the numerical relationships between xT and F can be 
used to evaluate xT for a given value of F. The quantile 
estimate for a return period of T years is just computed 
by inserting value F = (1–1/T) in the quantile function. 
The standard errors of these flood levels for different 
return years were estimated, and hence 95% confidence 
intervals were constructed using the parametric 
bootstrapping approach [5, 6, 49].     

Results and Discussion

The descriptive statistics of maximum annual 
discharge data from different gauging stations are given 
in Table 2. From these summary measures, it can be 
seen that, on average, Khanki gauging station has the 
maximum annual peak flow, and this particular site 
also has a higher variation in the maximum yearly 
flow. Generally, we see that variability in annual 
maximum peak flow is not too different for different 
gauging stations, which is evident from values of the 
coefficient of variation ranging from 66.45% to 70.25%. 
Randomness, independence, stationarity, and skewness 
are the core assumptions for the data to be used in flood 
frequency analysis through probability models [6, 49, 
50]. In the current article, we used the Wald-Wolfowitz 
(WW) test for testing randomness and the correlation 
coefficient at lag-1 for assessing independence, while 
the assumption of stationarity was tested using the 
Augmented Dickey-Fuller (ADF) test. The results of 
testing these assumptions are given in Table 3. From 
the p-values of the ADF and WW tests in Table 3, it is 
clear that assumptions of stationarity and randomness 
seem reasonable for all gauging sites considered in the 
study. Moreover, values of serial correlation at lag-1 
do indicate that there is no serious/severe violation of 
the independence assumption. Similarly, values of the 
coefficient of skewness indicate that the data series for 
all gauging stations is positively skewed. 

The validity of these assumptions justified the 
application of considered probability distributions for 
modeling of the annual maximum peak flow data for all 
gauging sites. 

The parameter estimates through LM, ML, LS, WLS, 
and RLS methods for all of the candidate probability 
distributions are given in Tables 4-8 for gauging sites 
at Marala, Khanki, Trimmu, Qadirabad, and Punjnad, 
respectively. The parameter estimates are accompanied 
by standard errors (in parenthesis) computed using 
the parametric bootstrapping approach [5, 6, 49]. The 
comparative performance of different probability 
distributions with estimation methods is also given in 
Tables 4-8. The performance is assessed in terms of the 
total number of ranks based on three GOF tests and four 
accuracy measures. For each gauging site, the blend of 

Performance Indicators 

To suggest the most suitable probability model for 
a particular gauging site, the performance of candidate 
models with an estimation method is assessed. The 
performance comparison is carried out using some 
common measures of accuracy and goodness-of-fit 
(GOF) tests. The test statistics of the GOF tests used in 
the current study are defined as: 

Kolmogorov-Smirnov (KS) test,

{ }ˆ( ) ( )n i iKS Max F x F x= − ⋅

Anderson-Darling (AD) test,

21 2 1 ˆ ( )
12 2

n

i
i

iCVM F x
n n

− = + − 
 

∑ .

Cramér–von Mises (CVM),

( ) ( ){ }1
1

2 1 ˆ ˆlog 1 ( ) log ( )
n

n i i
i

iAD n F x F x
n − +

=

− = − − − + 
 

∑ .

Similarly, accuracy measures like Root Mean Square 
Error (RMSE), Root Mean Square Percentage Error 
(RMSPE), Mean Absolute Error (MAE), and Mean 
Absolute Percentage Error (MAPE) are defined as:
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In the above GOF tests and accuracy measures,  
Fn(xi) represents the observed or empirical CDF and  
F̂ (xi) is the expected CDF of the distribution with 
particular parameter estimates. Similarly, xi represents 
the observed value, while x̂ i is the estimated value using 
particular parameter estimates.

Estimation of Quantiles 

The estimation of maximum peak flow for a 
particular return period (T) xT is a major objective of any 
flood frequency analysis. The recurrence interval T is 
expressed in terms of years, in which the maximum 
peak flow xT is expected to return. A specific flood level 
xT (T being the return period) may be exceeded once in 

T years. Therefore, 
1( )TP X x
T

> = , then the 

cumulative probability of non-exceedance F(xT) is

( ) ( ) 1 ( ) 1 1T T TF F x P X x P X x T= = ≤ = − > = −
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probability model and estimation method is compared by 
ranking based on GOF tests and accuracy measures. The 
highest rank is given to the highest p-value (in the case of 
GOF tests) and the lowest value (in the case of accuracy 
measures). The total rank score computed by adding all 
ranks is given for different combinations of probability 
distribution and estimation methods. The probability 
distribution with the maximum total rank is considered to 
be the most suitable for the particular gauging site. 

From these tables, it turns out that Generalized 
Pareto (GP) distribution with LS estimation is more 
suitable for Marala and Khanki gauging stations, as 
this blend of probability distribution and estimation 
method got the highest rank based on seven different 
performance indicators. For gauging sites at Qadirabad 
and Punjnad, GP distribution with the WLS method 
provides more accurate and precise results. Generalized 
extreme value distribution with ML estimation is best 

Gauging site n Mean Median Maximum 
(Annual) SD CV

Marala 72 9418.87 7080.29 31148.53 6315.72 0.6705

Khanki 74 10569.08 8004.85 30765.12 7424.82 0.7025

Qadirabad 48 10231.01 8417.45 26859.10 7170.63 0.7009

Trimmu 90 8452.82 7326.77 26731.10 5671.74 0.6709

Punjnad 70 8208.12 7551.86 22724.72 5454.29 0.6645

Table 2. Descriptive statistics of annual maximum discharge (m3/s) of the Chenab River.

Table 3. Results of testing assumptions of data from different gauging sites.

Table 4. Parameter estimates and performance comparison (Gauging site: Marala).

Gauging site n ADF(P-value) WW(P-value) Correlation at lag-1 Skewness

Marala 72 <0.01 0.2353 0.001 1.2856

Khanki 74 <0.01 0.8149 0.047 1.1508

Qadirabad 48 <0.01 1.00 0.079 0.9622

Trimmu 90 <0.01 0.3964 0.287 1.2185

Punjnad 70 <0.01 0.0541 0.295 0.6158

Distribution Method μ̂ α̂ k̂ Total Rank

GLO

LM 7767.663
(612.488)

2811.449
(331.925)

-0.316
(0.092) 102

MLE 7685.134
(5.892)

3105.981
(5.67)

-0.55
(0.035) 83

LS 7298.628
(8.7)

3038.087
(8.322)

-0.561
(0.138) 113

WLS 7324.065
(5.009)

2902.162
(4.628)

-0.503
(0.076) 136

RLS 7355.782
(4.984)

3140.995
(4.89)

-0.582
(0.034) 96

GEV

LM 6230.542
(529.408)

3770.856
(479.633)

-0.216
(0.111) 126

MLE 6231.38
(9.024)

3769.103
(8.699)

-0.398
(0.12) 107

LS 6210.904
(10.72)

3787.61
(9.787)

-0.348
(0.231) 120

WLS 6222.21
(7.434)

3777.271
(6.179)

-0.33
(0.178) 122

RLS 6230.72
(9.075)

3773.934
(7.98)

-0.488
(0.188) 72
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Table 5. Parameter estimates and performance comparison (Gauging site: Khanki).

Table 4. Continued.

GUM

LM 6642.637
(616.005)

4809.696
(504.781) --- 73

MLE 6645.577
(10.808)

4806.611
(11.215) --- 70

LS 6629.655
(12.357)

4803.194
(10.47) --- 79

WLS 6643.661
(14.906)

4791.505
(12.161) --- 76

RLS 6652.114
(11.902)

4809.471
(11.106) --- 67

GPD

LM 2622.268
(296.351)

7059.481
(1346.109)

0.039
(0.137) 142.5

MLE 2637.917
(6.597)

7054.279
(7.41)

0.067
(0.086) 136.5

LS 2608.045
(11.247)

7061.501
(10.225)

0.014
(0.173) 146.5

WLS 2614.224
(6.396)

7062.709
(5.011)

0.013
(0.129) 144.5

RLS 2619.634
(10.667)

7061.501
(9.184)

-0.059
(1.293) 125.5

REV

LM 12195.101
(641.604)

4809.696
(511.94) --- 22.5

MLE 12191.336
(8.003)

4802.985
(8.62) --- 28.5

LS 12190.788
(11.637)

4808.515
(10.064) --- 30.5

WLS 12190.117
(15.513)

4823.409
(11.786) --- 27.5

RLS 12194.263
(10.3)

4798.256
(12.029) --- 28.5

Distribution Method μ̂ α̂ k̂ Total Rank

GLO

LM 8578.07
(667.167)

3297.339
(386.536)

-0.323
(0.093) 96

MLE 8327.079
(4.872)

3719.802
(4.996)

-0.641
(0.027) 77

LS 7829.055
(8.756)

3603.425
(8.066)

-0.65
(0.135) 97

WLS 7824.397
(4.275)

3305.906
(4.286)

-0.569
(0.069) 116

RLS 7804.565
(4.714)

3520.225
(4.621)

-0.649
(0.029) 110

GEV

LM 6781.488
(596.143)

4398.43
(528.019)

-0.226
(0.11) 115

MLE 6779.137
(8.82)

4387.121
(8.658)

-0.554
(0.115) 79

LS 6770.721
(10.727)

4406.267
(9.219)

-0.37
(0.247) 114

WLS 6782.714
(7.262)

4397.79
(6.158)

-0.355
(0.175) 115

RLS 6760.904
(9.421)

4379.058
(7.609)

-0.634
(0.17) 59
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Table 5. Continued.

GUM

LM 7287.04
(708.425)

5685.983
(611.485) --- 73

MLE 7286.831
(11.241)

5671.209
(11.493) --- 81

LS 7281.227
(12.665)

5693.248
(11.419) --- 77

WLS 7287.752
(14.762)

5669.175
(12.005) --- 77

RLS 7289.501
(11.638)

5685.56
(11.303) --- 67

GPD

LM 2597.849
(372.489)

8150.795
(1491.281)

0.022
(0.125) 164

MLE 2622.528
(6.373)

8140.975
(7.507)

0.065
(0.08) 140

LS 2606.5
(10.996)

8156.522
(10.048)

0.005
(0.17) 170

WLS 2597.743
(6.112)

8152.081
(4.5)

-0.001
(0.133) 160

RLS 2598.673
(11.097)

8154.775
(8.818)

-0.012
(0.502) 153

REV

LM 13851.117
(653.604)

5685.983
(577.742) --- 24

MLE 13847.455
(8.518)

5680.258
(9.077) --- 28

LS 13840.106
(12.046)

5692.337
(9.851) --- 27

WLS 13812.404
(14.578)

5687.364
(12.066) --- 35

RLS 13855.784 
(11.213)

5682.703 
(12.367) --- 21

Table 6. Parameter estimates and performance comparison (Gauging site: Qadirabad).

Distribution Method μ̂ α̂ k̂ Total Rank

GLO

LM 8532.595
(943.523)

3447.037
(482.036)

-0.274
(0.101) 89

MLE 8140.054
(6.105)

3823.902
(6.241)

-0.592
(0.043) 81

LS 7916.106
(8.888)

3906.402
(8.014)

-0.544
(0.165) 103

WLS 7880.047
(5.242)

3581.542
(5.366)

-0.488
(0.102) 119

RLS 7824.25
(5.756)

4133.924
(5.76)

-0.667
(0.04) 64

GEV

LM 6609.171
(760.99)

4781.896
(676.025)

-0.156
(0.122) 112

MLE 6617.385
(9.528)

4785.468
(9.1)

-0.372
(0.145) 97

LS 6602.378
(10.34)

4783.172
(8.941)

-0.283
(0.268) 116

WLS 6589.003
(7.828)

4786.033
(6.999)

-0.263
(0.22) 126

RLS 6603.9
(9.475)

4783.234
(8.642)

-0.508
(0.242) 68
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Table 6. Continued.

Table 7. Parameter estimates and performance comparison (Gauging site: Trimmu).

GUM

LM 6973.139
(837.479)

5644.117
(760.89) --- 70

MLE 6960.049
(11.416)

5634.125
(11.208) --- 78

LS 6954.55
(11.025)

5636.569
(10.718) --- 79

WLS 6984.612
(13.439)

5635.43
(11.65) --- 70

RLS 6972.529
(11.505)

5632.61
(11.148) --- 78

GPD

LM 1858.87
(518.891)

9544.299
(2122.91)

0.14
(0.154) 162

MLE 1866.996
(6.332)

9536.78
(7.265)

0.206
(0.084) 142

LS 1841.839
(10.652)

9522.373
(9.718)

0.104
(0.179) 160

WLS 1864.111
(6.614)

9538.813
(5.112)

0.122
(0.141) 171

RLS 1860.427
(11.3)

9535.66
(9.081)

0.112
(1.109) 165

REV

LM 13488.884
(876.851)

5644.117
(709.547) --- 20

MLE 13488.048
(8.474)

5643.668
(9.037) --- 25

LS 13489.536
(12.453)

5659.823
(9.925) --- 26

WLS 13468.959
(13.579)

5629.302
(11.608) --- 32

RLS 13508.622
(10.374)

5615.216
(12.053) --- 22

Distribution Method μ̂ α̂ k̂ Total Rank

GLO

LM 7137.086
(520.59)

2647.512
(267.601)

-0.276
(0.075) 112

MLE 6884.571
(6.052)

2668.764
(6.829)

-0.388
(0.041) 129

LS 6859.404
(9.089)

2769.048
(8.109)

-0.419
(0.123) 118

WLS 6903.337
(4.801)

2732.891
(4.616)

-0.375
(0.072) 137

RLS 6985.346
(5.814)

2810.131
(5.347)

-0.39
(0.046) 125

GEV

LM 5661.177
(455.562)

3666.866
(382.674)

-0.158
(0.093) 142

MLE 5658.47
(8.095)

3650.411
(8.223)

-0.205
(0.09) 149

LS 5646.884
(11.211)

3656.956
(8.9)

-0.232
(0.2) 129

WLS 5656.272
(7.13)

3666.872
(5.656)

-0.217
(0.143) 136

RLS 5650.45
(9.273)

3657.876
(8.406)

-0.226
(0.164) 135
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Table 7. Continued.

GUM

LM 5945.849
(497.13)

4343.213
(432.186) --- 67

MLE 5945.236
(11.123)

4335.3
(11.461) --- 73

LS 5928.813
(12.522)

4354.189
(10.629) --- 76

WLS 5941.38
(17.229)

4334.401
(13.378) --- 78

RLS 5958.096
(11.527)

4330.818
(10.811) --- 66

GPD

LM 2025.099
(273.118)

7296.174
(1201.291)

0.135
(0.114) 106.5

MLE 2027.821
(5.886)

7307.77
(6.828)

0.16
(0.064) 97.5

LS 2016.544
(11.502)

7286.063
(10.02)

0.128
(0.138) 108.5

WLS 2017.511
(5.55)

7294.157
(4.441)

0.116
(0.108) 108.5

RLS 2013.246
(10.849)

7300.421
(9.2)

0.281
(0.678) 64.5

REV

LM 10959.79
(511.152)

4343.213
(408.4) --- 22.5

MLE 10959.79
(8.378)

4343.213
(9.275) --- 22.5

LS 10961.479
(11.472)

4346.723
(10.155) --- 18.5

WLS 10948.152
(17.279)

4340.959
(13.053) --- 30.5

RLS 10963.743
(10.636)

4330.726
(11.514) --- 23.5

Table 8. Parameter estimates and performance comparison (Gauging site: Punjnad).

Distribution Method μ̂ α̂ k̂ Total Rank

GLO

LM 7468.051
(671.275)

2977.291
(317.703)

-0.147
(0.07) 67

MLE 7431.049
(6.926)

3144.326
(7.18)

-0.285
(0.058) 75

LS 7341.052
(8.586)

3466.268
(7.841)

-0.224
(0.133) 90

WLS 7272.286
(5.094)

3205.575
(4.879)

-0.243
(0.103) 86

RLS 7164.378
(5.399)

4421.462
(4.846)

-0.6
(0.036) 39

GEV

LM 5711.289
(602.06)

4596.079
(467.391)

0.035
(0.088) 114

MLE 5714.788
(8.1)

4576.992
(8.463)

0.026
(0.088) 114

LS 5719.329
(10.749)

4604.797
(8.647)

-0.031
(0.188) 115

WLS 5706.757
(6.21)

4599.097
(5.75)

-0.013
(0.139) 119

RLS 5699.688
(10.232)

4591.782
(8.298)

-0.235
(0.219) 67
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Table 8. Continued.

Table 9. Estimated flood quantiles for different return years with 95% confidence intervals.

GUM

LM 5637.989
(581.505)

4452.644
(487.011) --- 105

MLE 5657.312
(11.528)

4448.414
(10.605) --- 109

LS 5625.473
(11.877)

4462.63
(10.601) --- 110

WLS 5659.205
(15.247)

4466.814
(12.678) --- 114

RLS 5641.932
(11.274)

4451.137
(10.009) --- 106

GPD

LM 534.538
(424.809)

11405.314
(2036.261)

0.486
(0.144) 143

MLE 535.504
(5.419)

11403.13
(5.824)

0.48
(0.046) 141

LS 542.904
(10.416)

11422.739
(9.598)

0.49
(0.104) 138

WLS 533.236
(4.439)

11405.137
(3.35)

0.479
(0.07) 143

RLS 530.215
(11.619)

11403.793
(8.518)

0.444
(1.924) 135

REV

LM 10778.26
(574.289)

4452.644
(466.274) --- 27

MLE 10774.825
(8.435)

4446.246
(8.978) --- 28

LS 10777.054
(11.633)

4451.614
(10.348) --- 30

WLS 10751.577
(14.371)

4457.8
(11.693) --- 33

RLS 10774.558
(9.962)

4440.219
(12.089) --- 27

Non-exceedance probability (F) for different return years

Gauging Site: 
(Suited 

Distribution)
Value

0.8 0.9 0.96 0.98 0.99 0.995 0.998 0.999

5
years

10
years

25
years

50
years

100
years

200
years

500
years

1000
years

Marala
(GPD-LS)

Upper 17949.04 27757.82 45021.34 62343.73 84473.74 112745.7 162504.5 212433

Fit 14220.37 19501.97 26957.69 33098.85 39824.25 47309.51 58762.06 69000.38

Lower 11789.67 14657.23 17702.1 19548.13 21075.2 22338.43 23679.77 24492.99

S.E 1647.587 3520.446 7427.179 11814.1 17913.43 26421.17 43318.91 62844.6

Khanki
(GPD-LS)

Upper 20667.49 32509.69 53739.87 75428.17 103573.4 140097.8 205577.2 272469.6

Fit 16128.16 22377.37 31285.05 38689.1 46854.56 55995.15 70040.55 82606.77

Lower 13412.65 16887.34 20658.8 22992.36 24956.54 26609.81 28400.71 29508.81

S.E 1919.534 4116.677 8694.007 13784.1 20728.77 30117.11 47727.62 66569.8

Qadirabad
(GPD-WLS)

Upper 19765.38 29280.29 43891.51 56717.94 71304.91 87894.08 113368.6 135731.4

Fit 16104.75 21707.11 28789.4 33979.15 39084.32 44155.13 50887.19 56062.28

Lower 13417.4 16626.29 19779.4 21545.14 22910.33 23965.85 25003.01 25583.82

S.E 1648.671 3271.252 6196.686 9003.383 12346.7 16269.48 22453.1 27997.8
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suited for the gauging site at Trimmu. It is noted that the 
GP distribution with LM and WLS estimations performs 
equally well for Punjnad.

From these results, there is no single probability 
distribution that fits best for all gauging sites. This 
finding is in line with the other studies focused on at-
site flood frequency analysis [5, 6, 22]. From the results, 
it is also clear that GP distribution with LS and WLS 
estimation is a suitable model for most of the sites. As 
there were varying sample sizes for different sites, it 
means that sample size does not have an impact on the 
performance of GP distribution. It is interesting to note 
that for all gauging sites, the most suitable probability 
model with one estimation method is also among the top 
performers with other estimation methods.  

Once the best-fit probability distribution is chosen 
for any particular site, the next objective of the flood 
frequency analysis is to compute quantiles for different 
return periods. Such quantiles for different return 
periods are computed using quantile functions and 
parameter estimates of the most appropriate blend 
of probability distribution and method of estimation.  
For each gauging site, the quantile estimate xT with  
non-exceedance probability F for return periods 5,  
10, 25, 50, 100, 200, 500, and 1000 years is given  
in Table 9. Uncertainties are always associated with  
the estimated flood quantiles computed for different 
return periods. To give an idea of these uncertainties, 
Table 9 also contains the 95% confidence intervals  
for estimated flood quantiles using parametric 
bootstrapping standard errors. For all gauging stations, 
the values of standard errors indicate that there is more 
uncertainty in flood estimates for longer return periods 
as compared to estimates of relatively short return 
periods.

Conclusions

The modeling of maximum annual discharge at 
different gauging sites of the Chenab River is done 

through different probability models blended with 
different estimation methods. To recommend the best-
suited pair of probability models and methods of 
estimation for each gauging site, we compared the 
performance of GLO, GEV, GUM, GP, and REV. GUM 
distributions were estimated with the LM, ML, LS, 
WLS, and RLS methods. The comparison is based on 
the total rank of 7 different measures of fit. For each 
gauging site, the probability distribution with the highest 
total rank score is considered most appropriate. 

Different probability distributions emerge as 
most suitable for flood frequency analysis at different 
sites. Generalized Pareto with LS estimation is the 
most suitable distribution for Marala and Khanki 
gauging sites. For gauging sites at Qadirabad and 
Punjnad, GP distribution with the WLS method is 
found to be the most suitable combination, while GEV 
distribution with the ML method performs better than 
all other distributions for the Trimmu gauging station.  
It can be concluded that GPD with LS and WLS 
estimation is the most suitable combination for most 
of the gauging stations (in fact, for all sites except for 
the gauging site at Trimmu). The results are well in line 
with many studies focused on at-site flood frequency 
analysis of rivers in different countries. The emergence 
of different best-suited probability distributions for 
different gauging sites has been reported in many  
other studies [5, 6, 9-11, 22]. Similarly, our finding about 
the larger uncertainty associated with longer return 
periods is common and reported in different studies [5, 
6].

These results can be used to study and forecast 
flood levels, the management of water reservoirs, and 
the planning of hydraulic structures at the Chenab 
River (and related catchment areas). The most suitable 
distributions recommended for different gauging sites 
can be useful candidate distributions for regional 
analysis of the Chenab River or at-site analysis of other 
rivers in near geographical locations. 

Table 9. Continued.

Trimmu
(GEV-MLE)

Upper 13054.41 18645.49 28389.66 38217.61 50912.66 67374.96 96896.5 127063

Fit 12101.51 16177.22 22391.4 27947.25 34442.37 42088.2 54398.57 65788.5

Lower 11246.2 14105.83 17799.63 20564.26 23344.67 26151.79 29931.2 32851.92

S.E 462.701 1165.032 2735.456 4580.798 7199.159 10847.86 17859.12 25457.34

Punjnad
(GPD-WLS)

Upper 14811.35 18987.19 23236.55 25703.95 27670.58 29238.06 30832.95 31758.61

Fit 13463.09 16678.74 19634.62 21184.7 22321.27 23156.64 23933.69 24346.23

Lower 12346.12 14833.74 16882.35 17837.64 18470.24 18889.14 19234.18 19395.3

S.E 640.8825 1080.529 1653.592 2047.263 2394.861 2694.457 3020.988 3221.168

Fit: estimated flood quantiles; 
S.E: bootstrap standard errors; 
Lower (Upper): lower (upper) limits of 95% confidence intervals for estimated flood quantiles.
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Limitations

Like every research project, the present study 
also has certain limitations, and work can be done 
in the future to overcome them. For instance, some 
other probability distributions, particularly four or 
five parameter distributions, can be applied. Similarly, 
different other estimation methods can be used for 
parameter estimation, like the method of maximum 
product spacing, Bayesian estimation, etc. Moreover, the 
analysis can be improved by incorporating a multivariate 
structure by taking temperature, rainfall, humidity, and 
other environmental factors into account.

Conflict of Interests

 The authors have no relevant financial or non-
financial interests to disclose.

Funding

The authors declare that no funds, grants, or other 
support were received during the preparation of this 
manuscript. 

Acknowledgments

The authors are grateful to Dr. Shahid Mehmood 
(University of Oxford) for proof reading the article for 
English language. This improved the understanding for 
the reader a lot.

References

1. GANAMALA K., KUMAR P.S. A case study on 
flood frequency analysis. International Journal of Civil 
Engineering and Technology, 8 (4), 1762, 2017.

2. SHAO Y., WU J., LI M. Frequency analysis of 
extreme precipitation in Huaihe River Basin based on 
hydrometeorological regional L-moments metho. Journal 
of China Hydrology, 36 (6), 16, 2016.

3. WU J., LIN B., SHAO Y. Application of regional 
L-moments analysis method in precipitation frequency 
analysis for Taihu Lake Basin. Journal of China Hydrology, 
35 (5), 15, 2015.

4. WU Y., XUE L., LIU Y. Local and regional flood 
frequency analysis based on hierarchical Bayesian model 
in Dongting Lake Basin, China. Water Science and 
Engineering, 12 (4), 253, 2019.

5. KOUSAR S., KHAN A.R., UL HASSAN M., BHATTI 
S.H. Some best-fit probability distributions for at-site flood 
frequency analysis of the Ume River. Journal of Flood 
Risk Management, 13 (3), e12640, 2020.

6. UL HASSAN M., HAYAT O., NOREEN Z. Selecting 
the best probability distribution for at-site food frequency 
analysis; a study of Torne River. SN Applied Sciences, 1 
(12), 1, 2019.

7. BAIDYA S., SINGH A., PANDA S.N. Flood frequency 
analysis. Natural Hazards, 100 (3),  1137, 2020.

8. LI M., LI X., AO T. Comparative Study of Regional 
Frequency Analysis and Traditional At-Site Hydrological 
Frequency Analysis. Water, 11 (3), 486, 2019.

9. BADYALINA B., MOKHTAR N.A., JAN N.A.M., 
HASSIM N.H., YUSOP H. Flood Frequency Analysis 
using L-Moment for Segamat River. MATEMATIKA: 
Malaysian Journal of Industrial and Applied Mathematics, 
37 (2), 47, 2021.

10. ZHANG Z., STADNYK T.A., BURN D.H. Identification 
of a preferred statistical distribution for at-site flood 
frequency analysis in Canada. Canadian Water Resources 
Journal, 45 (1), 43, 2020.

11. FAROOQ M., SHAFIQUE M., KHATTAK M.S. Flood 
frequency analysis of river swat using Log Pearson type 
3, Generalized Extreme Value, Normal, and Gumbel Max 
distribution methods. Arabian Journal of Geosciences, 11 
(9), 1, 2018.

12. DRISSIA T.K., JOTHIPRAKASH V., ANITHA 
A.B. Flood Frequency Analysis Using L Moments: a 
Comparison between At-Site and Regional Approach. 
Water Resources Management, 33 (3), 1013, 2019.

13. GURU N., JHA R. Flood Frequency Analysis of Tel Basin 
of Mahanadi River System, India Using Annual Maximum 
and POT Flood Data. Aquatic Procedia, Elsevier 4 , 427, 
2015.

14. VIVEKANANDAN N. Flood frequency analysis 
using method of moments and L-moments of probability 
distributions. Cogent Engineering, 2 (1), 1018704,  
2015.

15. OLOGHADIEN I. Selection Selection of Probabilistic 
Model of Extreme Floods in Benue River Basin, Nigeria. 
European Journal of Engineering and Technology Resear, 
6 (1), 7, 2021.

16. SAEED S.F., MUSTAFA A.S., AUKIDY M. AL. 
Assessment of Flood Frequency Using Maximum Flow 
Records for the Euphrates River, Iraq. IOP Conference 
Series: Materials Science and Engineering, 1076 (2021), 1, 
2021.

17. SAMANTARAY S., SAHOO A. Estimation of flood 
frequency using statistical method: Mahanadi River basin, 
India. H2 Open Journal, 3 (1), 189, 2020.

18. SINAM R. At Site Flood Frequency Analysis of Baitarani 
River at Champua Watershed, Odisha. International 
Journal of Scientific Research in Science and Technology, 
6 (6), 54, 2019.

19. CASTELLARIN A., KOHNOVÁ S., GAÁL L., FLEIG 
A., SALINAS J.L., TOUMAZIS A., KJELDSEN T.R., 
MACDONALD N. Review of applied statistical methods 
for flood frequency analysis in Europe. Milestone Report 
for WG2 of COST Action ES0901, Centre for Ecology & 
Hydrology, Wallingford, UK, pp. 142, 2012. 

20. CUNNANE C. Statistical distributions for flood frequency 
analysis. Operational Hydrology Report, WMO, 1989.

21. BOBEE B., CAVADIAS G., ASHKAR F., BERNIER 
J., RASMUSSEN P. Towards a systematic approach to 
comparing distributions used in flood frequency analysis. 
Journal of Hydrology, 142 (1-4), 121, 1993.

22. AHMAD I., FAWAD M., MAHMOOD I. At-Site Flood 
Frequency Analysis of Annual Maximum Stream Flows in 
Pakistan Using Robust Estimation Methods. Polish Journal 
of Environmental Studies, 24 (6), 2345, 2015.

23. RIAZ M., AZIZ A., HUSSAIN S. Flood Forecasting of 
an Ungauged Trans-boundary Chenab River Basin Using 
Distributed Hydrological Model Integrated Flood Analysis 



Sajjad Haider Bhatti, et al.42

System (IFAS). Pakistan Journal of Meteorology, 13 (26), 
51, 2017.

24. MAGSI H., ATIF S. Water Management, Impacts and 
Conflicts: Case of Indus water distribution in Sindh, 
Pakistan. International Journal of Rural studies, 19 (2), 3, 
2012.

25. GURU N., JHA R. Flood Frequency Analysis of Tel Basin 
of Mahanadi River System, India Using Annual Maximum 
and POT Flood Data. Aquatic Procedia, Elsevier, 4, 427, 
2015.

26. WAGH V., VAIDYA P., AKHARE V., SUREKA H., 
BOKIL S. Probability distribution of flood frequency 
analysis. International Research Journal of Engineering 
and Technology, 7 (8), 3796, 2020. 

27. XIONG F., GUO S., CHEN L., YIN J., LIU P. Flood 
frequency analysis using Halphen distribution and 
maximum entropy. Journal of Hydrologic Engineering, 23 
(5), 04018012, 2018.

28. ALAM M.A., EMURA K., FARNHAM C., YUAN J. 
Best-Fit Probability Distributions and Return Periods for 
Maximum Monthly Rainfall in Bangladesh. Climate, 6 (1), 
1, 2018.

29. CASSALHO F., BESKOW S., MELLO C.R. DE, 
MOURA M.M., KERSTNER L., ÁVILA L.F. At-Site 
Flood Frequency Analysis Coupled with Multiparameter 
Probability Distributions. Water Resources Management, 
32 (1), 285, 2018.

30. YUSOFF S.H.M., HAMZAH F.M., JAAFAR O. 
Multiparameter probability distributions of at-site 
Lmoment-based frequency analysis in Malaysia. 
International Journal of Mechanical Engineering, 7 (4), 48, 
2022.

31. HOSKING J.R.M. The theory of probability weighted 
moments. IBM Research Division, TJ Watson Research 
Center, pp. 1, 1986.

32. HOSKING J.R.M. L-moments: analysis and estimation of 
distributions using linear combinations of order statistics. 
Journal of the Royal Statistical Society Series B: Statistical 
Methodology, 52 (1), 105, 1990.

33. UL HASSAN M., NOREEN Z., AHMED R. Regional 
frequency analysis of annual daily rainfall maxima in 
Skåne, Sweden. International Journal of Climatology, 41 
(8), 4307, 2021.

34. HOSKING J.R.M., WALLIS J.R. Regional frequency 
analysis: an approach based on L-moments. Cambridge 
University Press, 2005.

35. DAS S. Goodness-of-fit tests for generalized normal 
distribution for use in hydrological frequency analysis. 
Pure and Applied Geophysics, 175 (10), 3605, 2018.

36. TEAM R.C. R: A Language and Environment for 
Statistical Computing. R Foundation for Statistical 
Computing. Vienna, Austria, 2022.

37. ALI S., ARA J., SHAH I. A comparison of different 
parameter estimation methods for exponentially modified 
Gaussian distribution. Afrika Matematika, 33 (2), 1, 2022.

38. KHAN K.H. Parameter Estimation for the Gompertz 
Distribution Model Using Least-Squares Method 
in Conjunction with Simplex and Quasi-Newton 
Optimization Methods. World Applied Sciences Journal, 
35 (4), 552, 2017.

39. ZEINELDIN R.A., CHESNEAU C., JAMAL F., 
ELGARHI M. Statistical Properties and Different 
Methods of Estimation for Type I Half Logistic Inverted 
Kumaraswamy Distribution. Mathematics, 7 (10), 1, 2019.

40. BERGMAN B. Estimation of Weibull parameters using 
a weight function. Journal of materials science letters, 
Springer, 5 (6), 611, 1986.

41. ALQALLAF F., GHITANY M.E., AGOSTINELLI C. 
Weighted Exponential Distribution: Different Methods 
of Estimations. Applied Mathematics & Information 
Sciences, 1173 (3), 1167, 2015.

42. DEY S., ALZAATREH A., GHOSH I. Parameter 
estimation methods for the Weibull-Pareto distribution. 
Computational and Mathematical Methods, 3 (1), e1053, 
2021.

43. USTA I., CELIK E. Comparison of different estimation 
methods for the Marshall – Olkin extended Weibull 
distribution. Journal of Scientific Research and 
Development, 2 (12), 101, 2015.

44. ZHAO X., ZHANG Z., CHENG W., ZHANG P.A. A 
New Parameter Estimator for the Generalized Pareto 
Distribution under the Peaks over Threshold Framework. 
Mathematics, 7 (5), 06, 2019.

45. PABLO B.S., BRUCE E.R. Model Parameter Estimation 
Using Least Squares. Water Research, 26 (6), 789, 1992.

46. HUSSAIN S., BHATTI S.H., AHMAD T., SHEHZAD 
M.A. Parameter estimation of the Pareto distribution 
using least squares approaches blended with different 
rank methods and its applications in modeling natural 
catastrophes. Natural Hazards, 107 (2), 1693, 2021.

47. RASHID M.Z., AKHTER A.S. Estimation Accuracy 
of Exponential Distribution Parameters. Pakistan Journal 
of Statistics and Operation Research, University of the 
Punjab, College of Statistical & Actuarial Science 7 (2), 17, 
2011.

48. ZAKA A., AKHTAR A.S. Methods for estimating 
the parameters of Power function distribution. Pakistan 
Journal of Statistics and Operations research, 92 (2), 213, 
2014.

49. MEYLAN P., FAVRE A.-C., MUSY A. Predictive 
hydrology: A frequency analysis approach, 2012, CRC 
Press 2012.

50. KITE G.W. Frequency and Risk Analyses in Hydrology. 
Revised Ed, Water Resources Publications, LLC, 2019.


