
Introduction

Due to swiftly accelerating economic growth, air 
pollution is currently a global public health issue. The 
natural environment, public health, and economic 
development are all impacted by air pollution. According 
to a meta-analysis, cardiovascular disease can increase 
by 11% on average with long-term exposure to PM2.5 
[1]. Over a nine-year follow-up period, a 10% increase 
in cardiovascular mortality was linked to an increase 
in PM2.5 exposure in a large cohort aged 50-71 from six 
U.S. states and two metropolitan regions [2].

As a result, techniques for decision-making and 
analysis based on models may be created to enhance the 
creation of air protection plans [3]. When developing 
air pollution models, two basic methods are often 
employed: data-driven or empirical modeling and 
theoretical or deterministic modeling. Theoretical 
models that are often employed include Community 
Multiscale Air Quality (CMAQ) [4, 5] and Gaussian 
diffusion [6]. Air pollution forecasting has made 
extensive use of classical data-driven models such as the 
Autoregressive Integrated Moving Average (ARIMA) 
model [7], Support Vector Machine (SVM) [8, 9], Long 
Short-Term Memory (LSTM) [10, 11], and Bidirectional 
Long Short-Term Memory (Bi-LSTM) [12, 13]. Due to 
its great approximation capability, the PWA (Piecewise 
Affine) model is a crucial data-driven technique that has 
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Abstract 

Since air pollution affects both public health and economic growth, the issue has received more 
attention recently. Model-based early warning systems or pollution management tactics can be used 
to assist in combating dangerous air pollutants if accurate prediction models are available. This paper 
presents an approach to forecasting air contaminants using a piecewise affine model, which has  
a high prediction power. To identify the piecewise affine model, this study adopts effective clustering 
to identify the model. The proposed hierarchical clustering method improves the widely used BIRCH 
(Balanced Iterative Reducing and Clustering using Hierarchies) by adding a refining step to handle 
clusters with arbitrary geometries. Additionally, an optimization strategy like GA (Genetic Algorithm) 
is used to jointly estimate the model order and parameters. Measurements of Shenyang’s air quality are 
used to illustrate the proposed approach, and the outcomes reflect the method’s good prediction ability.
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attracted a lot of attention and is already being utilized 
to solve difficult issues in simulation, prediction, and 
system analysis [14]. Typical application fields of PWA 
models are providing solutions for vehicle powertrains 
[14-17], robotics [18], power and energy [19], industry 
production processes [20-22], and rainfall runoff 
[23]. Also, the PWA modeling method was adopted 
for motion segmentation in computer vision [24, 25].  
More details about applying PWA models can be 
found in [14]. By dividing the scheduling space into 
polyhedral convex regions and creating local models, 
the PWA model is developed. Partitioning regression 
space, estimating partition borders, and parameterizing 
each affine sub-model are typical processes involved 
in the discovery of PWA models [26]. The challenge 
of identifying PWA models is often regarded as 
difficult and is NP-hard [14]. The connection between 
identification and the classification problem is  
a major source of difficulty [27]. Numerous techniques 
have been presented in the past for identifying PWA 
models. It can provide a model with similar training 
data, which shortens the training period and increases 
generalizability. It is possible to estimate the sub-model 
parameters concurrently or later.

This work focuses on the identification of the PWA 
model with optimum model order selection using 
hierarchical clustering. The BIRCH (Balanced Iterative 
Reducing and Clustering using Hierarchies) technique 
has garnered a lot of attention in the past several decades 
as an effective agglomerative hierarchical clustering 
algorithm. However, clusters with arbitrary forms or 
changeable volumes should not use this approach [28]. 
This study introduces an additional phase to BIRCH, 
whereby partitions with the closest distances are merged 
until the desired number is reached. Next, the suggested 

modeling approach is used to forecast Shenyang, China’s 
air pollution. The proposed method is broad and might 
be extended to include different kinds of models. The 
following are this paper’s primary contributions:
 – To forecast air pollutants, a data-driven PWA model 

is presented. This model is defined by dividing the 
scheduling space into local regions.

 – A hierarchical clustering-based method is adopted 
for the identification of the PWA model, and the 
optimization methodology estimates the model order 
and parameters.  

 – The performance of the proposed model is compared 
with the baseline models, and the proposed method 
is used to forecast air pollution in Shenyang.

Materials and Methods

Study Area

Shenyang, the largest city in northern China, 
serves as both the physical and transportation core for 
Northeast Asia and a key hub for the Belt and Road 
initiative, which connects the region to Southeast and 
Northeast Asia. Plains and mountains make up the 
majority of the landscape of this hilly area, which is 
situated in the southeast. Shenyang has four different 
seasons and a broad variety of temperatures due to 
its temperate, subhumid continental environment.  
The yearly average temperature ranges from 6.2 to 9.7ºC, 
with considerable seasonal variations. Summer winds 
are generally southwest and northerly, winter winds 
are generally north, and spring winds are frequently 
southwest and northerly. Shenyang saw annual wind 
speeds ranging from 2.8 to 4.4 m/s, with springtime 

Fig. 1. Location of Shenyang in China.
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increases and summertime decreases [29]. The location 
of Shenyang in China is shown in Fig. 1.

Transportation, central heating, and industrial 
activity are the key factors influencing Shenyang’s air 
environment. Since the early days of the creation of 
New China, Shenyang, one of the first heavy industry 
bases in China, has established numerous heavy 
industry production businesses with a solid industrial 
basis. Its industrial structure is primarily responsible 
for the high coal use. For instance, in 2016, there was 
a significant increase in the amount of coal consumed 
overall – roughly 33 million tons – compared to the 
national average, which is much lower. Meanwhile, 
the share of renewable energy was less than 13%. 
Consequently, because of coal-based consumption, 
particulate matter (PM) is Shenyang’s main source of air 
pollution; the city’s annual PM2.5 and PM10 daily exceed 
rates are 12.1% and 7.7%, respectively. Wintertime coal-
burning heating raises PM2.5 and PM10 levels, which 
leads to extreme pollution. The highest monthly average 
mass concentrations of PM2.5 were seen in March and 
February, while the lowest were observed in August.

Data

As was already established, several variables 
affect air quality, including geography, environmental 
concerns, social or pollution emissions, and future air 
pollutants that can be predicted using previous variations.  
The main factor may be variations in climatic conditions, 
which have an impact on pollutant concentrations. It has 
been determined that meteorological data is a crucial 
input variable for air quality forecasting in statistical 
and mathematical models. As a result, the recommended 
forecasting models use meteorological and air pollution 
data as training sets. The two aspects that make up the 
datasets used in this study are meteorological variables 
and factors related to air quality. This contribution 
combines hourly data to train and assess the PWA air 
pollution forecasting model. Air pollutants, temperature, 
humidity, air pressure, dew point, and wind direction/
speed are among the overserved data sets. 

Method

The PWA model with hierarchical clustering-based 
identification is presented in this section.

Model Structure

The PWA model is defined as superposed c local 
models that explain the MISO (Multiple-Input-Single-
Output) system. The predictor of air pollution in this 
research is the PWARX (Piecewise AutoRegressive 
eXogenous) model, which has an interpretable nonlinear 
structure [30]. The model is defined as:

   (1)

with the regressor:

  (2)

Where na and nb are model orders, respectively, 
 are the parameter vectors. The regression space 

is split into c polyhedral partitions,  and 
each local model is valid in each partition. The approach 
presented in this paper is used to identify the PWA 
model. Since the measurement cannot be used directly, 
data processing is necessary before training.

Data Processing

The dataset’s outliers and missing data will be 
handled first. Subsequently, the correlation analysis 
is carried out to choose pertinent attributes for the 
prediction model. Pearson’s correlation coefficient 
(PCC), a commonly used statistical indicator to assess 
and investigate the degree of correlation between 
variables in practice, is used to quantify the correlation 
among characteristics. In time series data, Pearson’s 
correlation coefficient generally explains the degree 
to which the goal variable (y) and the input variable 
(x) correlate over a certain period. The target variable 
y in this study reflects the measured value of air 
pollution, whereas the input variables represent the 
inputs to the PWA model. The following formula may 
be used to compute Pearson’s correlation coefficient 
mathematically:

  (3)

where x̅ is the average of x and y̅ is the average value 
of y. With +1 denoting total positive correlation, 0 
denoting no connection, and -1 denoting total negative 
linear correlation between x and y, Pearson’s correlation 
coefficient is between +1 and -1. A greater correlation 
coefficient value, which denotes a closer relationship 
between the detected characteristics, will lead to the 
selection of additional processing. 

Then, to solve the issue of the curse of dimensionality, 
Principal Components Analysis (PCA) will be utilized. 
By keeping low principal components and ignoring 
high-order principal components, PCA can minimize 
the number of dimensions. Then, low-order components 
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may typically preserve important information. The core 
principle of PCA is to keep the majority of the data while 
condensing numerous variables into new, uncorrelated 
ones. The chosen features should be normalized before 
PCA dimension reduction since the projection will 
attempt to mimic any substantial premium that a feature 
may have in the data after the projection, which may 
lead to a sizable quantity of missing data.

Clustering Method

Then, the scheduling space will be portioned into 
local regions using clustering. The “similarity” of 
the data must be assessed for techniques that rely on 
clustering. As a common machine-learning approach, 
clustering is used to categorize the data points of related 
objects. Hierarchical and partitional clustering are two 
categories of clustering methods. The goal of partitional 
clustering is to minimize predetermined criteria for 
dividing data points into c divisions. Hierarchical 
clustering applies agglomerative and divisive 
methodologies to progressively investigate a hierarchy of 
clusters. Agglomerative techniques combine the nearest 
clusters repeatedly after collecting clusters from the 
bottom up. Data points are iteratively split into smaller 
clusters from the top down. BIRCH performs clustering 
based on a tree structure, namely the Clustering Feature 
(CF) Tree, as a common agglomerative clustering 
technique.

It is observed that in the typical BIRCH algorithm, 
the shape and size of clusters are determined by the same 
hyperparameter. However, clusters with arbitrary forms 
or changeable volumes should not use this approach [28]. 
A modified version of the BIRCH approach is presented 
in this study to enhance the performance of irregularly 
shaped clusters. The second step of clustering refines 
the first stage using the average linkage, which finds the 
average distance drs between each cluster pair Cr and Cs:

  (4)

where nr and ns are the numbers of data points in cluster 
Cr and Cs, xri, and xsj are the i-th and jth data points in 
cluster Cr and Cs, dist(xri, xsj) is the distance between xri 
and xsj. The second step is carried out following standard 
BIRCH until the required number of clusters is reached.

Estimation of the Order and Parameters  
of Local Models

Once data points have been clustered using the 
suggested approach, the values of model parameters are 
estimated using 

  (5)

To ascertain the model order denoted by na and nb in 
Eq. (2), the Lasso-regularization is introduced by adding 
a regularization L1-term in Eq. (5).

 (6)

where  is the L1-norm and λ>0 is a tuning 
parameter, which is a trade-off between model-fit and 
parameter variations. Eq. (6) can be solved by using 
global optimization methods.

Experiment

Model Quality Assessment

Three criteria are adopted to assess the quantitative 
quality of the model in this work. They are the 
correlation coefficient (R), the mean absolute error 
(MAE), and the root mean square error (RMSE):

  (7)

  (8)

  (9)

where N is the number of test data, y is the true value,  
is the predicted value,  is the mean of the true values, 
and  is the mean of the predicted values. Higher R 
values and results with decreased MAE and RMSE 
suggest that the model can achieve better prediction 
performance.

Data Processing

The proposed approach is used in the experiment to 
forecast the level of air pollution in Shenyang, based on 
the previously described technique. In the case study, the 
period of the model construction is from 2016 to 2018. 
Correlation analysis is conducted to choose pertinent 
characteristics based on PCC before determining  
the suggested PWA model. The feature correlation 



On Prediction of Air Pollution... 97

components. Therefore, in addition to the anticipated 
values, these three principal components, which contain 
important information from the data, are employed for 
the prediction of air pollution. PCA has been used to 
extract. 

Results and Discussion

Simulation Results

The proposed model will be used to forecast air 
pollution. In Fig. 3, the observed data is represented by 
the blue line, while the PM2.5 forecast made by the PWA 
model is shown by the red line. The estimate accurately 
depicts the hourly PM2.5. The model’s forecast and 
the measurement are rather close, which means that 

analysis is displayed in Fig. 2. It is shown that the 
majority of air pollution features have positive 
correlations, except O3, which is negatively correlated 
with other features. In Fig. 2 there is a weaker link 
between meteorological and air pollution characteristics; 
all parameters except wind and atmospheric pressure 
have a negative correlation with air pollutants.  
As previously mentioned, accuracy may be increased 
by excluding elements that are uncorrelated or weakly 
linked. In this work, a threshold of 0.2 is specified, and 
features with correlation coefficients greater than 0.2 are 
deemed to be strongly associated. 

To get over the dimensionality problem, the PCA 
approach helped to lower the dimension of the number 
of selected features. The PCA method result shows 
that over 90% of the information supplied by the 
complete features is contained in the first three principal 

Fig. 2. Correlation analysis between various features.

Fig. 3. PWA model for predicting PM2.5 a) Comparison between observed data and prediction b) fit comparison between observed data 
and prediction.
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the model can precisely predict PM2.5, according to 
the testing samples. The correlation coefficient (R) 
between the measurement and prediction of PM2.5 is 
0.9849, indicating that almost 98% of the variation was 
explained by the model. It is also possible to accurately 

forecast the majority of peak positions, and the 
prediction curve closely resembles the observed curve. 
It shows that significant state changes can be handled by 
the suggested paradigm. However, as Fig. 3 illustrates, 
the prediction could not consistently fit the actual  

Fig. 4. Comparison between observed data and prediction with the PWA model for predicting PM10.

Pollutant Assessment
Model type

ARIMA SVM MLP LSTM Bi-LSTM PWA 

PM2.5

MAE 4.8397 4.9947 5.4228 4.1131 3.9283 3.1432

RMSE 7.9783 8.0555 9.1091 6.9221 6.7698 5.1462

R 0.9766 0.9730 0.9678 0.9815 0.9842 0.9856

PM10

MAE 4.4571 4.6712 4.9376 3.9819 3.7758 2.8859

RMSE 8.1971 8.2387 9.9853 7.3213 6.8945 5.2701

R 0.9801 0.9758 0.9723 0.9865 0.9889 0.9914

SO2

MAE 3.5284 3.8103 4.2158 3.2901 3.0921 2.5238

RMSE 6.8816 7.2311 7.9701 6.3551 5.8911 4.2518

R 0.9412 0.9378 0.9328 0.9445 0.9476 0.9544

NO2

MAE 4.2924 4.7609 5.1291 3.8811 3.6354 3.1185

RMSE 5.6025 6.2190 6.5452 5.3019 5.1922 4.6505

R 0.9551 0.9512 0.9489 0.9577 0.9593 0.9654

CO

MAE 0.1401 0.1468 0.1569 0.1380 0.1299 0.0770

RMSE 0.1858 0.1922 0.2021 0.1740 0.1682 0.1211

R 0.9629 0.9577 0.9442 0.9631 0.9688 0.9708

Table 1. Performance of the PWA model.

Table 2. Comparison of different models. 

Assessment
Air pollutant

PM2.5 PM10 SO2 NO2 CO

MAE 3.1432 2.8859 2.5238 3.1185 0.0770

RMSE 5.1462 5.2701 4.2518 4.6505 0.1211

R 0.9856 0.9914 0.9544 0.9654 0.9708
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data with lower concentration values when PM2.5  
is less than 110 μg/m3. On the other hand, greater PM2.5 
values may be predicted with accuracy by the PWA 
model.

When other air pollution, like PM10, is predicted 
using the proposed approach, the prediction values 
generally still match the observed data. Fig. 4 results 
show that the proposed approach may be effectively 
used for PM10 prediction with a similar outcome to 
PM2.5. As all of the pollutants in Table 1 have R values 
for the prediction over 0.95, the model that was provided 
can accurately forecast the air pollution. 

Comparison with Other Methods

This work compares the proposed PWA model with 
several baseline techniques, like SVM, MLP, ARIMA, 
LSTM, and the Bi-LSTM model, to evaluate the 
effectiveness of the proposed approach. The outcomes 
of the suggested PWA model are shown in bold. In 
this study, several models are built using the same 
data sets, but the input sequences are altered by the 
structural differences between the models. The proposed 
model is contrasted with alternative models for PM2.5 
prediction in Table 2. Due to the constraints of the 
model architectures, MLP, ARIMA, and SVM display 
significantly more significant mistakes, although both 
LSTM and Bi-LSTM, two deep learning techniques, 
performed better. Table 2’s MAE, RMSE, and R 
values show that the model that was proposed for this 
study performed better in terms of prediction than the 
other baselines. Additionally, it is better able to depict 
the features of pollutant concentrations. Overall, the 
performance of the suggested model was enough for the 
prompt implementation of additional safety measures 
using realistic prediction tasks.

Conclusions

The data-driven PWA method was proposed in this 
work to predict air pollution. Initially, a new clustering-
based technique was used to find a data-driven PWA 
model for air pollution prediction. The widely used 
BIRCH algorithm was enhanced by the suggested 
clustering approach, which added a refinement step to 
handle clusters of any shape. Next, global optimization 
is used to estimate both the model order and parameters 
at the same time.  

This study employed this approach to forecast 
Shenyang, China’s air pollution, and it compares the 
performance of the suggested model to the baseline 
models. The proposed models for predicting air pollution 
were compared against several baseline models. The 
proposed approach, according to the results, might 
successfully generate models with higher quality 
that are more suitable for early warning of higher air 
pollution concentrations and for developing trustworthy 
management measures for effective environmental 

protection. The proposed approach may be used in 
future research to forecast more air contaminants in 
different regions. The second research would target the 
enhancement of model quality by taking into account 
other potential affecting factors.
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