
Introduction

Currently, global ecological issues are of universal 
concern. Environmental issues, represented by extreme 
weather phenomena and global warming, are forcing a 
transformation of economic production sectors. In the 
SDGs, responsible consumption and production are the 

12th element, while climate action is the 13th element. 
In other words, economic activities that do not damage 
the climate environment are considered an important 
element of the Sustainable Development Goals [1, 
2]. Sustainable development is not only a remarkable 
pursuit for developed countries, but also an important 
matter to be practiced by developing countries [3]. 
China is the largest developing country in the world 
in terms of economic size and also one of the largest 
energy consumers. Since 2018, China has steadily 
ranked first in the world in terms of carbon emissions, 
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Abstract

The Chinese government is constantly pursuing a green transformation of its industry under 
the United Nations Sustainable Development Goals (SDGs). At the same time, the booming digital 
economy has brought new opportunities and challenges to the Chinese government, and it is relevant 
to discuss the contribution of the digital economy to China’s green development. In this study, we use 
panel data for 247 cities in China from 2011-2019. The impact of the digital economy on green total 
factor productivity is examined, and the mechanism of green technological innovation in this process 
is verified. It has been found that the digital economy can promote GTFP and that green technological 
innovation has a positive moderating role in this process. We also verify the threshold effect of green 
technological innovation, and the role of the digital economy can be inflated when green technological 
innovation reaches the corresponding threshold. Of course, these findings pass a series of robustness 
tests, and they are plausible. Accordingly, we put forward some policy recommendations to mitigate  
the possible problems in reality in order to promote green production in China.
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with a huge population, booming transportation, and 
a massive manufacturing sector contributing to this 
situation. Because of this, China is facing a serious 
ecological challenge. The Chinese government has 
made a corresponding commitment to “climate action”, 
or carbon peaking, i.e., no further growth in carbon 
emissions after 2030. The Chinese government is well 
aware that relying on policy instruments alone to control 
the scale of production will only slow the growth of 
carbon emissions, which will not achieve the ultimate 
goal of carbon neutrality [4]. For this reason, it is 
necessary to increase the desired output in industrial 
production as soon as possible. The Chinese government 
is committed to creating an industrial system of clean 
production [5]. Compared to the economic value-
oriented development model of the past, the Chinese 
government prefers to consider the overall benefits of 
industry, especially the ecological contribution of the 
industry itself. Whether or not there is a negative impact 
on the environment has become a necessary condition 
for assessing the industry’s prospects. At the same 
time, the Chinese government is seeking any means 
that might be effective for economic transformation or 
cleaner production. In other words, ecologically oriented 
industrial transformation is an imminent task for China 
to consider, and the digital economy is a very favorable 
tool [6]. Increasingly sophisticated communication 
technologies have triggered a wave of digital economies, 
and the digitization of some traditional industries 
in particular has boomed. The Chinese government 
favors this economic model with data elements at its 
core and sees it as a new engine for economic growth. 
The digitization of industry is the most intuitive 
manifestation of the digital economy, and decision-
making departments often rely on data computing, data 
analysis, and data forecasting to guide manufacturing 
activities. However, rapid digitalization is strictly 
difficult, and the vast majority of industrial companies 
do not have sufficient budget to invest in driving the 
digitalization process in their industries. This has given 
rise to a large number of companies engaged in data 
services and data computing, whose main business 
is the analysis and prediction of data, which is known 
as data industrialization. The emergence of these 
companies related to the data element has rapidly led 
to the spread of artificial intelligence among enterprises 
and a fundamental change in some of the traditional 
production methods of the past. These companies are 
also reaching out to other traditional industries through 
an “embedded” approach, leading to changes in other 
industries [7].

Needless to say, the Chinese government is very 
determined in its ambition to achieve green development, 
and getting rid of environmental regulations and creating 
a thriving digital economy is a new option for China’s 
industrial transformation. As a result, a great deal of 
research has been discussed around the digital economy 
and environmental development. Several studies have 
analyzed the relationship between the digital economy 

and environmental pollution. It was found that the digital 
economy can effectively reduce air pollution, especially 
by controlling PM2.5 concentrations and greenhouse 
gas emissions [8]. Although most of the studies found 
that the pathways of the digital economy on air pollution 
are not exactly the same, they are persuasive, at least 
in terms of their conclusions [9]. In addition to this, 
the digital economy has a positive effect on sustainable 
development as well as cleaner production, where the 
digital economy saves most of the resources by adjusting 
the allocation of resources while reducing unnecessary 
links to control the production of non-desired outputs 
[10]. There are also findings that demonstrate the 
dynamics of the relationship between the digital 
economy and ecological sustainability: although the 
infrastructure of the digital economy increases energy 
consumption, over time this negative effect is replaced 
by an increase in production efficiency [11-13]. In 
other words, in the long run, the digital economy can 
effectively increase the efficiency of natural resource 
utilization and improve the quality of the environment, 
a finding validated in the Chinese sample [14-16].
In the energy sector, the boom of the digital economy 
has also contributed to the optimization of the energy 
consumption structure. Specifically, digital technologies 
have made business production consumption-oriented, 
increasing the share of effective production in total 
output and saving energy consumption [17, 18]. In the 
production sector, the digital economy undoubtedly 
contributes to the transformation of the industrial 
structure and plays a stronger role, stimulated by patent 
regulation and environmental regulations [19, 20]. These 
studies discuss the relationship between digitization and 
pollutants in economic production and also analyze the 
relationship between digitization and the structure of 
production sectors. However, few studies seem to focus 
on the impact of exogenous shocks in digitization, a 
new technological factor, on the efficiency of traditional 
factor inputs and outputs. So, what is the relationship 
between the data factor, a non-traditional technological 
factor, as an exogenous environmental factor, and 
changes in green total factor productivity?

In this study, we examine the relationship between 
digital economic development and green total factor 
productivity using panel data for 247 cities in China 
over the period 2011 - 2019. The 247 cities selected have 
a sufficient population and some industrial bases. Some 
cities that are located in western China are sparsely 
populated or predominantly agricultural, and are not 
considered in the scope of this paper. The marginal 
contributions of this paper may be as follows: First, 
green total factor productivity (GTFP) measurements 
have been mentioned a lot in many past studies, and 
in fact, with the updating of data and refinement of 
methodology, GTFP has been effectively used in green 
production. However, many past measures would 
consider green total factor productivity in isolation, 
i.e., statistically. At the same time, multiple constraints 
are not strictly considered in the construction of the 
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indicators; therefore, we provide a new and more 
realistic way of measuring that has more rigorous 
results. In addition, in the discussion of mechanisms, 
we summarize and validate similar findings from past 
studies. Fortunately, these conclusions still hold under 
the more stringent GTFP state. Some past studies 
have argued that the digital economy can promote 
environmental performance or improve eco-efficiency, 
while others have found that the digital economy 
can promote industrial restructuring, and the same 
is validated, especially from the micro perspective 
of firms. Therefore, studies that validate the growth 
of the digital economy in the urban industrial sector 
can reinforce these arguments. At the same time, 
we emphasize the important role played by green 
technologies in this process, i.e., the moderating effect 
and the threshold effect hold true at the same time, 
which clarifies the path between the digital economy 
and the green transformation of industry.

Literature Review 

The Literature Context of the Digital Economy

The digital economy was not clearly defined 
at the beginning, and was used to refer to the new 
economic relationships made possible by Internet 
technology. However, with the continuous development 
of information and communication technologies, the 
public gradually became aware of the transformative 
impact of the Internet on economic activities [21]. 
A growing number of researchers want to give it a 
precise definition. Over the past two decades, some 
studies have considered the digital economy as the 
electronification of the process of trading goods, while 
others have considered it the online interconnection 
of business organizational forms [22, 23]. In recent 
years, when global communication interconnection 
was commonly achieved, Balcerzak summarized past 
research and gave a broader definition. He believes that 
all economic activities driven by ICT can be considered 
part of the digital economy [24]. A large number of 
studies on the digital economy now agree that the core 
of the digital economy is the data element. That is, 
economic activities that are organized and realized by 
using information elements by means of information 
technology [25, 26]. However, there are currently no 
official digital economy standards issued by the Chinese 
government. Researchers have developed a number of 
measurements around the definition and connotation 
of the digital economy. Jiang et al. provide one of the 
most direct ways to measure the digital economy, which 
is to use the ratio of Internet users in the population as 
a proxy for the digital economy [27, 28]. However, as 
Internet penetration grows, the growth elasticity of this 
ratio will become less and less, eventually converging 
infinitely to 1 (this is, of course, in an ideal state). 
This seems inconsistent with the real situation of the 
development of the digital economy. Shahbaz et al. used 

the entropy method to measure the digital economy 
index in four areas: infrastructure, social impact, digital 
trade, and social support, which more fully reflect the 
areas covered by the digital economy [29]. And the 
full array polygon graphic index method was used to 
measure the digitization level in the study by Ren et al. 
Of course, there are also studies that use the Entropy-
TOPSIS model to construct a digital economy model 
from both input and output perspectives. It mainly 
covers four aspects of digital innovation elements: 
digital infrastructure, digital enterprise development, 
and enterprise digitalization [30, 31]. In addition, some 
scholars have constructed a digital economy index using 
the number of Internet users, the number of cell phones 
used, and the Beijing University Financial Inclusion 
Index. In general, these digital economy indices measure 
different forms, but they are all in line with the standard 
in the selection of indicators [32].

Green Total Factor Productivity

In the beginning, total factor productivity (TFP) 
was considered a measure of technological progress 
in production. The DEA model is the most common 
method to measure TFP. DEA, as a non-parametric 
technical efficiency analysis method, has been widely 
used in many social science research fields by virtue 
of its many advantages, such as no assumption of 
production function, no strict requirements on the 
scale of input-output indicators, and the ability to 
distinguish desired output from non-desired output 
[33]. Then, in the traditional total factor productivity 
model, labor, capital, and energy are the basic input 
variables, while economic output is quite naturally the 
output variable. However, such a consideration ignored 
harmful outputs and failed to take note of changes in 
the external environment [34, 35]. In fact, the energy 
input is not unlimited, and the carrying capacity of 
the external environment changes with the scale of 
production. Based on this situation, scholars have 
included the factor of environmental pollution in the 
total factor productivity model, which is the green total 
factor productivity (GTFP). It is clear that most of the 
efficiency decreases after considering environmental 
pollution, which shows that environmental pollution 
is a factor that should not be neglected, especially in 
the field of industrial production [36, 37]. Because of 
this, in order to measure GTFP, researchers have used 
a large number of different methods to characterize it. 
In addition to the differences in calculation methods, 
there are also significant differences in metrics. We will 
analyze their advantages and disadvantages in detail, as 
well as emphasize the advantages of using the model in 
this paper, in  Experimental Procedures. 

Digital Economy and Green Development

There has been a lot of literature surrounding 
the digital economy (or ICT industry) and green 
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development in the past, which discusses various 
impacts of the digital economy and its environmental 
effects, sustainability, etc. Most of the studies conclude 
unanimously that there are potential positive benefits 
of the digital economy on environmental quality on 
a long-term scale. For example, it has contributions in 
areas such as improving energy efficiency, reducing 
greenhouse gas emissions, and enhancing resource 
management. Thus, the impact of the digital economy 
on green development is almost certain. And yet, in 
the case of industrial production, we need to clarify 
where the digital economy may be contributing to clean 
industry. The digital economy is driving its own growth 
through technological innovations that are quickly 
being applied to the production process. As a result, 
the efficiency of resource use is further improved, and 
energy management and environmental monitoring 
become smarter. As an example, smart grids and smart 
transportation road networks effectively advance the 
construction of smart cities. And the central system can 
well analyze the real-time data of the whole city, so as 
to provide a reference basis for more optimal decision-
making. When the whole city can function efficiently, 
then the level of public services will be significantly 
improved. The cost of public spending for businesses 
is reduced, and more money can be spent on product 
development and technological improvements. In 
addition, in the industrial sectors where production 
takes place, digital information elements are transmitted 
much faster. There is virtually no time lost in the 
transfer of data from the production line to the decision-
making department. Producers and managers are 
linked more effectively. Likewise, production costs are 
greatly reduced, and companies can then gain a higher 
profit margin and think about how to develop cleaner 
technologies. Of course, the positive benefits of the 
digital economy for the environment are potential, as 
is the case for green total factor productivity. We were 
able to speculate through the above series of arguments 
that the digital economy reduces production costs for 
industrial firms. But, due to the omission of external 
environmental regulations, will firms really invest 
this surplus capital created by the digital economy in 
clean technology R&D? Then, we need to clarify the 
causes of the “omission of external regulation”. The 
Chinese government is resolute in its environmental 
regulations, as evidenced by strict emission standards. 
Establishing monthly maximum pollution emissions 
from enterprises based on industrial output and 
maximum concentrations of hazardous substances in 
emissions can effectively limit the damage caused by 
these wastes to the environment. However, it seems 
that it is easier for companies to acquire equipment 
to treat wastewater and waste gases than to develop a 
new production technology. The rewards of technology 
development are uncertain, but proven waste disposal 
equipment is practical. Therefore, as long as pollutant 
emissions are guaranteed to meet standards, companies 
seem to be more willing to expand production than clean 

technology development. So, it is true that pollution 
from industry has decreased, but the change in green 
total factor productivity is not necessarily due to green 
technological innovation. We want to measure the true 
production of industrial firms through green total factor 
productivity. To this end, we use green technological 
innovation as a mechanism variable to examine whether 
the impact of the digital economy on green total factor 
productivity receives the impact of green technological 
innovation. So, we need to address three main questions 
in this study. To this end, we have formulated three 
hypotheses:

H 1: The development of the digital economy can 
have a significant impact on GTFP.

H 2: Green technological innovation can moderate 
the impact of the digital economy on GTFP.

H 3: Green technological innovation acts as  
a threshold variable in this process.

Experimental Procedures

Measurement of Green Total Factor Productivity

The SBM-DEA Model

As mentioned in Green Total Factor Productivity 
Section, there are various ways to measure GTFP. It is 
necessary to compare the different points in common 
DEA models and analyze their application scenarios. 
The advantages, disadvantages, and characteristics 
of various models of DEA are summarized by Ge et 
al. [38]. Here, we briefly introduce the model chosen 
in this paper and how it differs from other models. 
Traditionally, DEA models can be divided into radial 
and non-radial models. Radial models, represented by 
CCR and BBC, overlook the issue of slack variables 
[39, 40]. Moreover, traditional DEA models assume 
that higher outputs lead to higher efficiency, but they 
neglect the emissions of environmental pollutants 
such as SO2 or CO2, which are considered undesirable 
outputs that cannot be avoided in production activities. 
Therefore, in addition to maximizing desirable outputs, 
it is necessary to minimize the generation of undesirable 
outputs. Traditional DEA models are no longer suitable 
for handling such undesirable outputs. To address these 
issues, Tone proposed a slack-based measure (SBM) 
DEA model, which takes into account the problem of 
slack variables and avoids underestimating efficiency 
values. Based on this, Tone further introduced the super-
efficiency SBM-DEA model to effectively deal with the 
problem of no further comparisons being possible after 
reaching optimal efficiency. Meanwhile, Cooper et al. 
proposed an SBM-DEA model that considers undesirable 
outputs [41, 42]. Building on Tone and Cooper et al., the 
formula demonstrates the SBM-DEA model considering 
undesirable outputs under the assumption of constant 
returns to scale (CRS):
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assumption and the lack of transitivity [43]. Previous 
studies have often built the GM index on the Directional 
Distance Function (DDF) [34]. However, the choice of 
direction vectors is subjective. Therefore, in this study, 
we continue to construct the GM index within the 
SBM model, considering undesirable outputs. Thus, the 
calculation of total factor productivity is transformed 
into the Green Global Malmquist-Luenberger Index, 
represented by the following formula:

In the given context, (xt, yt, bt) and (xt+1, yt+1, bt+1) 
represent the inputs, desirable outputs, and undesirable 
outputs in period t and period t+1, respectively. Et 
and Et+1 represent the technical efficiency of input and 
output for the production technology at times t and t+1. 
TC denotes the measure of technological change, and 
EC represents the measure of efficiency change. When 
the global reference-based Malmquist-Luenberger 
value is greater than 1, it indicates an improvement in 
productivity. When the productivity value is less than 1, 
it represents a decrease in productivity. A productivity 
value of 1 indicates no change in productivity. In other 
words, the ML index is able to reflect the technological 
progress of each year. Unfortunately, this efficiency is 
calculated based on the previous year’s base period. 
That is, it cannot measure the change in efficiency 
over multiple consecutive years. For this reason, we 
performed a cumulative multiplication process using 
2011 as the base period to examine the change over the 
period 2011-2019 [44, 45]. 

Selection of Indicators for the DEA Model

Next, we need to consider the components of the 
Green Total Factor Productivity Index. Certainly, a 
large number of past studies provide us with good 
references [46]. Here, the traditional input indicators 
are still divided into labor, energy and capital. They 
are measured by the number of employees, the amount 
of standard coal consumed for energy, and the capital 
stock, respectively.

And in the expected output part, we take fiscal 
revenue into consideration in addition to the traditional 
economic output. Although GDP is regarded as the best 
indicator of the level of economic development, the 
composition of its economic output varies greatly from 
region to region, due to the huge differences in industrial 
structure, industrial level and openness. For example, 
there are three cities with exactly the same output 
value, but one of them relies on plantation, another 
is reduced to a foreign-owned foundry, and the last 

Assuming there are n decision-making units, m 
inputs, S1 desirable outputs, and S2 undesirable outputs, 
the input matrix is denoted as X = [x1, ..., xn]∈Rm×n, 
the desirable output matrix as Yg = [y1

g, ..., yn
g]∈Rs1×n, 

and the undesirable output matrix as Yb = [y1
b, ..., 

yn
b]∈Rs2×n. It is also assumed that X>0, Yg>0 and Yb>0. 

Therefore, the production possibility set P̃, which 
includes undesirable outputs, is defined as follows:  
P̃  = {(x, yg, yb)|x≥Xλ, yg≤Ygλ, yb≥Yb, λ≥ 0}, where λ∈Rn

 

is 
the intensity vector. This production possibility set with 
undesirable outputs is defined under the assumption of 
CRS.

Where s–∈Rm represents input excess (input slack 
variable), sb∈Rs2 represents excess production of 
undesirable outputs (undesirable output slack variable), 
and sg∈Rs1 represents production shortfall of desirable 
outputs (desirable output slack variable). The objective 
function ensures that si

–(∀i), sr
g(∀r), sr

b(∀r)strictly 
decrease. The optimal solution of the objective function 
is denoted as , and the optimal 
value of  satisfies 0< ≤1. If the value of  for 
any DMU0 (x0, y0

g, y0
b) is equal to 1, it indicates that 

the decision-making unit is efficient. In other words, 
the DMU does not have input excess s–* = 0, no excess 
production of undesirable outputs sb* = 0, and no 
production shortfall of desirable outputs sg* = 0.

The DEA-SBM-ML Model

Traditional efficiency measurement methods are 
limited to static comparative analysis, making it difficult 
to capture changes in the production process over time. 
However, in reality, technology is constantly evolving. 
To address this issue, Färe et al. proposed the Malmquist 
Productivity Index (MPI) to measure the changes in 
decision-making units between two periods [35]. Pastor 
and Lovell further introduced the Global Malmquist 
Index (GMI), which considers data from all periods and 
treats them as a holistic productivity possible set (PPS). 

Assuming that the reference sets for each period 
are denoted as Sg, we have Sg = S1 ∪ S2 ∪ S3 ∪ ... ∪ SP. 
GMI solves two problems: the possibility of infeasible 
solutions under the variable returns to scale (VRS) 
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one is a headquarters for R&D of high-tech products. 
Obviously, they do not have the same economic output. 
However, too many indicators will reduce the accuracy 
of the measurement results and we cannot figure out this 
black box. Therefore, we would like to include a suitable 
indicator to reflect the differences between different 
cities in addition to economic output. Obviously, fiscal 
revenue is a suitable choice. If a region has a high GDP 
and low fiscal revenue, then we should reasonably 
suspect that the region is perhaps not as industrially 
advanced as we think. 

Finally, there is the non-desired output component. 
In general, industrial SO2  is considered the most direct 
undesired output. There are also many studies that 
consider industrial wastewater, industrial dust, and 
industrial waste gas as non-desired outputs. However, 
in this paper, we use data on haze. We hope that the 
annual average unit concentration of PM2.5 can reflect 
the pollution status of the region. This data is obtained 
from the Atmospheric Composition Analysis Group, 
Dalhousie University, and is more representative of the 
real situation than some official statistics.

Econometric Models

Baseline Regression: a Panel, Two-Way Fixed Model

To examine the relationship between DE and GTFP, 
we need to construct a benchmark regression model. 
Based on the previous study [9], we chose a two-way 
fixed-effects panel data model. This model takes into 
account individual differences and time differences, and 
the regression results are more realistic; see Equation 1.

 1it it it i tgtfp de C uα λ ϕ ν ε= + + + + +  (1)

Here, i stands for individual, and t stands for time. 
GTFP is shorthand for Green Total Factor Productivity, 
while DE is the digital economy and C is a set of control 
variables. u and v denote individual and time effects, 
respectively, and ε is a stochastic error term. 

Confirmation of Impact Mechanisms: 
Moderating and Threshold Effects

Furthermore, we need to add the moderating variable 
term to equation 1 to account for the moderating effect 
of green technological innovation, i.e., Equation 2.

1 2it it it it it i tgtfp de de gtec C uα λ λ ϕ ν ε= + + × + + + +  (2)

Finally, we need to investigate whether green 
technological innovation can be used as a threshold 
variable in the process of the digital economy, affecting 
green total factor productivity. For this purpose, we 
constructed Equation (3).

1 3 4( ) ( )it it it it it it it i tgtfp de de w q p de w q p C uα λ λ λ ϕ ν ε= + + × ≤ + × > + + + + 

 1 3 4( ) ( )it it it it it it it i tgtfp de de w q p de w q p C uα λ λ λ ϕ ν ε= + + × ≤ + × > + + + +  (3)

Here, q is the threshold variable, w(.) represents the 
indicator function with a value of 1 or 0 (if the condition 
in the brackets is satisfied, then the value is assigned to 1; 
otherwise, it is 0.), p is the specific threshold value.

Selection of Variables

Explained variable: The dependent variable in this 
paper is GTFP, and its calculation procedure and method 
are derived from the Measurement of Green Total 
Factor Productivity. The explanatory variable, which 
is the independent variable, is the digital economy 
index(de). In this paper, based on a large number of 
previous literature studies, the digital economy index 
is constructed using principal component analysis. 
The principal component analysis method has been 
widely used in studies in similar fields. We selected 
four indicators, including the number of Internet users 
per 100 people, the total amount of telecommunication 
services per capita, the number of cell phone subscribers 
per 100 people, and the digital financial inclusion index 
(Peking University). For the control variables, we chose 
total fiscal expenditures( fe), the number of industrial 
enterprises above the scale(nie), per capita regional 
GDP(eco), and the number of residents’ savings(sav). 
Mechanism variable: The sum of green invention 
patents and green utility model patents in each region 
is used to measure green technological innovation(gtec). 
To alleviate the heteroskedasticity problem, all control 
variables were logarithmically treated.

Data Sources

In the DEA-SBM-ML model, the number of 
employees, fiscal revenue, and gross regional product 
are obtained from the CSMAR Database (of course, 
some missing values are also filled in from the statistical 
yearbooks of prefecture-level cities). The number of tons 
of standard coal consumption is obtained from the China 
Energy Statistical Yearbook. For the capital stock data, 
the perpetual inventory method is used to derive results, 
where the depreciation rate is 10.96% and the base year 
is 2000 [47]. For the average PM2.5 concentration, 
publicly available data from the Atmospheric 
Composition Analysis Group of Dalhousie University 
was used [48]. In the regression model, all variables 
and their components were obtained from the CSMAR 
database, except for green technological innovation, 
which was obtained from the CNRDS database.

Results and Discussion

First, we compiled the results of the variable 
measures in Experimental Procedures, as shown in 
Table 1.
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Table 1. Descriptive statistics of variables.

Variable Obs Mean Std. Dev. Min Max

gtfp 2223 2.248 1.548 0.508 24.01

de 2223 0.975 0.764 0.165 7.961

fe 2223 4.874 1.026 2.305 8.877

nie 2223 6.765 0.998 3.045 9.309

eco 2223 1.501 0.546 1.119 3.845

sav 2223 7.745 1.033 5.678 12.01

gtec 2223 0.905 2.482 0.000 34.67

Fig. 1. Spatial distribution of gtfp and de in 2011, 2015, and 2019. 
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Further, to show more clearly the spatial-temporal 
variation of the main variables, we plotted Fig. 1. where 
the left side shows the distribution of gtfp from top to 
bottom for 2011, 2015, and 2019, while the right side 
corresponds to the spatial pattern of de. As can be seen 
from Fig. 1, both de and gtfp are gradually increasing 
over time. gtfp increases more significantly in coastal 
areas and inland central cities. As far as de is concerned, 
de values are usually higher in provincial capitals than 
in other regions.

To test Hypothesis 1, we conducted a benchmark 
regression, and the results are shown in Table 2. From 
the left to the right are the results of regressions, with 
the gradual addition of control variables. The first 
column shows the results of the regression without 
adding any control variables, and the coefficient is 
0.406 with a t-value of 5.43, which is significant at the 
1 percent level. However, this result is not credible 
because it suffers from the problem of important omitted 
variables. After we add other variables that may have an 
impact on green total factor productivity to the model, 
we find that the regression coefficients of DE remain 
around 0.38 and are all significant at the 1 percent level. 
Therefore, we consider the conclusions to be reliable. In 
other words, the digital economy can contribute to the 
growth of GTFP. Next, we also need to briefly focus on 
the coefficients of the control variables, where nie and 
sav have a negative effect on GTFP. It may be because 
the growth in the number of above-scale industries 
is mainly due to the gradual expansion of some small 

and medium-sized enterprises (SMEs), which are still 
immature and therefore not sufficiently advanced in 
terms of production technology. As for savings, it may 
be because too much savings will squeeze the factor 
inputs for innovation and hinder the progress of GTFP. 
Overall, however, hypothesis 1 was tested.

Next, to ensure the reliability of the experimental 
results, we need to test the robustness of the regression 
equations. Therefore, we conducted panel quantile 
regression as well as 1% and 99% reduced-tail 
regression. Thus, we use a panel quantile regression 
model, exclude the exceptional samples, and shrink the 
tails by 1% and 99% for robustness testing. As shown 
in Table 3, the first column shows the results of the 
panel quantile regression at the 90 percent level, the 
second column shows the results of the panel quantile 
regression at the 75 percent level, the third column 
shows the results of the panel quantile regression at the 
60 percent level, the fourth column shows the results 
of the reduced-tailed regression, and the fifth column 
shows the results after excluding the four special cities 
of Shanghai, Beijing, Tianjin, and Chongqing.

We find that all the coefficients of de are greater 
than 0 and remain significant from columns 1 to 5. This 
indicates that our model construction is robust. Further, 
we need to consider whether there are important omitted 
variables that cause the model to be endogenous. In 
this paper, an instrumental variables approach is used 
to address this issue. The basic requirement for an 
instrumental variable is that it is correlated with the 

Table 2. Benchmark regression results.

(1) (2) (3) (4) (5)

de 0.406*** 0.402*** 0.399*** 0.378*** 0.375***

(5.43) (5.39) (5.36) (5.08) (5.05)

fe 0.473*** 0.548*** 0.320** 0.392***

(3.81) (3.95) (2.16) (2.61)

nie -0.139 -0.322*** -0.316***

(-1.21) (-2.63) (-2.60)

eco 0.791*** 0.842***

(4.24) (4.49)

sav -0.680***

(-2.90)

_cons 0.785*** -1.320** -0.73 0.565 5.089***

(8.39) (-2.36) (-0.98) (0.71) (2.90)

YEAR YES YES YES YES YES

CITY YES YES YES YES YES

N 2223 2223 2223 2223 2223

adj. R2 0.466 0.469 0.47 0.474 0.476

t statistics in parentheses * p<0.1, ** p<0.05, *** p<0.01, the same below.
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inner variable, but must be an exogenous variable. We 
use the product of the number of telephone subscribers 
per 10,000 people in each region in 1984 and the number 
of Internet subscribers in the previous period as the 
instrumental variable.

As shown in Table 4, it can be seen that the F-value 
of the first column is greater than 10, P-value is also 
0, which indicates that the instrumental variables 
selected in this paper are not weak instrumental 
variables. Moreover, the number of instrumental 
variables and endogenous variables are equal, which 

indicates that there is no over-identification problem. 
Then the regression coefficient of iv in the first stage 
is positive and significant. This indicates that there is 
a positive correlation between instrumental variables 
and independent variables. The results of the second 
stage are consistent with the baseline regression, which 
indicates that the results are robust. Next, we turn to the 
issue of regional heterogeneity. Now that Hypothesis 1 
has been verified to be reliable, we would like to know 
whether DE pairs of GTFP will demonstrate different 
effects in different regions. However, since we have 
excluded many cities in the western provinces from our 
sample selection, it would be easier to simply divide 
the full sample into eastern, central, and western.  
It may leave the western region with too small a sample. 
Therefore, we have classified them into three types, 
namely, high, medium, and low, according to the level 
of economic development of the districts. Specifically, 
we calculated the average GDP per capita for 2011-
2020 as an evaluation criterion. We consider areas 
greater than 60,000RMB (the current price translates 
to approximately $8,400) as value areas and areas 
between 33,000-60,000RMB as average areas. Finally, 
we consider areas below 33,000RMB as low areas (the 
current price is about $4,600). Table 5 demonstrates the 
results of the heterogeneity test, where the first column 
is the low areas, the second column is the average areas, 
and the third column is the high areas.

We were surprised to find that the effect of DE on 
GTFP varies widely across regions. The regression 
coefficient reaches 0.740 in regions with higher levels 
of economic development, while in regions with lower 

Table 3. Robustness test results.

(1) (2) (3) (4) (5)

de 0.326*** 0.354*** 0.356*** 0.233*** 0.348***

(2.88) (3.45) (3.19) (4.51) (4.94)

fe 0.191 0.501*** 0.455*** 0.398*** 0.378***

(0.84) (4.54) (5.86) (4.11) (2.70)

nie -0.738*** -0.372*** -0.256*** -0.264*** -0.238**

(-6.45) (-6.70) (-6.54) (-3.31) (-2.09)

eco 1.237*** 0.982*** 0.765*** 0.671*** 0.729***

(6.64) (10.85) (12.01) (5.32) (4.17)

sav -1.388*** -1.118*** -0.904*** -0.602*** -0.707***

(-3.11) (-3.78) (-3.54) (-4.22) (-3.23)

_cons 2.897*** 2.743*** 2.674*** 4.499*** 4.988***

(3.69) (4.88) (5.24) (4.21) (3.07)

YEAR YES YES YES YES YES

CITY YES YES YES YES YES

N 2223 2223 2223 2223 2196

adj. R2 0.670 0.504

Table 4. 2SLS-IV regression results.

First stage Second stage

de gtfp

iv 0.556***

(3.73)

de 0.523*

(1.77)

Control YES YES

Year YES YES

City YES YES

N 2223 2223

adj. R2 0.425 0.321

F 97.80
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levels of economic development, the result is only 
0.017 and insignificant. This suggests that the digital 
economy contributes more significantly to green total 
factor productivity in regions with better economic 
development, which is a sign of strength. The digital 
economy can play a more critical role in regions with 
well-developed industrial systems and high economic 
development. Conversely, in some lagging regions, its 
role is limited. 

At this point, the validation of Hypothesis 1 is 
essentially over. We need to further analyze the 
mechanism issue. That is, what are the mechanisms 
by which the digital economy affects green total factor 
productivity? Of course, this hypothesis has already 
been proposed in the previous section, and we would like 
to examine the role that green technological innovation 
may play in this process. Therefore, we ran a regression 
on equation 2, and the results are shown in Table 6.

Next, observe the regression results in Table 6. In 
order to present a clearer picture of the regression, we 
report the results without putting the control variables 
together. In addition, we also place the first and fifth 
columns from Table 1 here. Note that later in the 
hypotheses, we need to ensure the stability of the main 
variable (DE). If the significance of the main variable 
and the direction of the coefficients change significantly 
with the inclusion of the interaction term, then the 
coefficients of the interaction term are meaningless. 
Fortunately, the direction of the coefficients on all of 
the main variables remained consistent, suggesting that 
the addition of the interaction term did not create a new 

endogenous problem. Then, we observe the coefficients 
and significance of the two interaction terms, and they 
are 0.057 and 0.056, respectively. This means that green 
technological innovation has a positive moderating 
effect on the digital economy, regardless of whether 
control variables are considered or not. In other words, 
the coefficient of DE grows with gtec. In that case, the 
second hypothesis is also verified. Finally, we want to 
examine whether green technological innovation acts 
as a threshold variable in this process. Accordingly, we 
perform a threshold regression.

We set up 300 Bootstrap tests, performing single-
threshold, double-threshold, and triple-threshold tests in 
that order. The results show that the F-value for the first 
threshold is 28.42, the F-value for the second threshold 
is 68.58, and the F-value for the third threshold is 
30.60. The P-value is less than 0.1, which suggests that 
there may be a triple threshold. However, in terms of 
confidence intervals, the third of the triple thresholds is 
missing the upper and lower thresholds. This suggests 
that the third threshold, the one with a threshold value 
of 8.104, does not exist (this conclusion is, of course, 
further verified in the LR diagram). Therefore, we 
believe that there are just two thresholds, which means 
that this is a two-threshold model. Next, we divided the 
time period of the study sample into Phase I and Phase 
II. The first phase covers the period 2011-2015, while 
the second phase covers the period 2015-2019. Note that 
2015 is included in both phases. Of course, again, we 

Table 5. Results of the heterogeneity test.

(1) (2) (3)

de 0.017 0.263* 0.740***

(0.06) (1.83) (4.32)

fe 0.033 0.261* 0.838

(0.18) (1.78) (1.34)

nie -0.335** -0.230* -0.173

(-2.30) (-1.67) (-0.42)

eco 1.475*** 0.959*** 0.797

(5.29) (4.19) (1.60)

sav -0.088 0.200 -1.400

(-0.38) (0.67) (-1.52)

_cons 2.669 -0.898 12.267*

(1.62) (-0.40) (1.69)

YEAR YES YES YES

CITY YES YES YES

N 729 945 549

adj. R2 0.560 0.665 0.493

Table 6. Regression results for moderating effects.

(1) (2) (3) (4)

de 0.296*** 0.329*** 0.375*** 0.406***

(4.13) (4.56) (5.05) (5.43)

de×gtec 0.057*** 0.056***

(12.56) (12.50)

fe 0.157 0.392***

(1.08) (2.61)

nie -0.295** -0.316***

(-2.52) (-2.60)

eco 0.990*** 0.842***

(5.48) (4.49)

sav -0.702*** -0.680***

(-3.11) (-2.90)

_cons 6.016*** 0.824*** 5.089*** 0.785***

(3.56) (9.14) (2.90) (8.39)

YEAR YES YES YES YES

CITY YES YES YES YES

N 2223 2223 2223 2223

adj. R2 0.515 0.505 0.476 0.466



Towards Green Production: How Big a Role... 5687

need to examine the existence of their thresholds first, 
and the results are shown in Table 7. Next, we perform 
threshold regression analyses for the full sample,  
Phase I, and Phase II, and their results are displayed in 
Table 8.

To verify that these results are accurate, we plotted 
the LRs for the full sample, stage 1 and stage 2, see Fig. 2. 
Not surprisingly, all thresholds are consistent with those 
in Tables 7 and 8.

The above results indicate that our resulting 
threshold regression results are plausible. We interpret 
the results in Table 9. In the full sample area, there are 
two thresholds for green technological innovation, at 
1.390 and 2.468. When the value of gtec is smaller than 
the first threshold, the regression coefficient of de is only 
0.202, while when the value of gtec is between the two 
thresholds, the regression coefficient of de is 0.420. If the 
value of gtec exceeds the second threshold, the regression 

Table 7. Test for number of thresholds.

Table 8. Tests for Phase I Thresholds and Phase II Thresholds.

Type Threshold Threshold value P-value F 95% confidence 
interval

Single threshold 1st 2.468 0.000 68.58 [2.1285, 2.7660]

Double threshold 1s 1.390 0.000 28.42 [0.8610, 4.5775]

Double threshold 2rd 2.468 0.000 68.58 [2.1980, 2.7660]

Triple Threshold 1s 1.390 0.000 68.58 [0.8610, 4.5775]

Triple Threshold 2rd 2.468 0.000 28.42 [2.1980, 2.7660]

Triple Threshold 3th 8.104 0.100 30.60 non-existent

Type Threshold Threshold value P-value F 95% confidence 
interval

Phase I 1st 0.833 0.040 68.58 [0.7080, 0.9460]

Phase I 2nd 3.456 0.200 30.60 [3.0220, 4.5750]

Phase II 1st 2.091 0.040 26.87 [1.7870, 2.4210]

Phase II 2nd 3.080 0.040 24.51 [2.5470, 3.4770]

Fig. 2. LR test results.
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coefficient of de becomes 0.994. It can be said that the 
difference between the three regression coefficients 
is still relatively large. Next, we look at the regression 
results for the first period. We find that the driving effect 
of the DE on GTFP is insignificant when gtec is smaller 
than the first threshold. The regression coefficient is 
0.411 when gtec is between the two thresholds, and 
this result is 0.669 when gtec is larger than the second 
threshold. The overall regression coefficient is lower 
than that for the full sample period, which is certainly 
in line with the true picture. This period is in the early 
stages of the development of the digital economy the 
concept of green total factor productivity is not yet 
widely recognized and pollution control in China is still 
in its infancy. Finally, we observe the regression results 
between 2015-2019. At less than the first threshold, the 
regression coefficient is 0.256, after crossing the first 
threshold, this result comes to 0.437, and after crossing 
the second threshold, this result becomes 1.020, with all 
three regression coefficients significant. This result is 
similar to the full sample, which indicates that the results 
of the threshold regression are plausible. Note, however, 
that their thresholds change after distinguishing 
between the before and after phases (of course, you 
can easily spot this in Fig. 2). Here, we are looking to 
examine the existence of the thresholds at different time 
periods rather than the changes in the threshold values. 
Because we are using panel data, its experimental 
results are only responsible for China from 2011-2019. 
That is, if the data are available, we assume that the 
interval of the study extends backward from 2019 to 
2022 or even 2023, where the results become different. 

In fact, the reasons for the difference in thresholds 
are quite understandable. In different time periods, 
either DE, GTFP, or gtec, their means as well as their 
statistical distributions are different, and in general, the 
second stage is slightly higher than the first. From the 
regression coefficients themselves, the coefficients are 
relatively higher in the second stage, which suggests that 
the growth rate of GTFP is higher than that of DE in the 
second stage. Of course, this is literally true. What we 
are trying to convey is that the thresholds are not likely 
to be uniform because of the stochastic nature of the 
movement of the mechanism variable, the independent 
variable, and the dependent variable. But one thing can 
be proved: in any case, we are sure that gtec can act as 
a threshold variable in this interval and that the positive 
effect of the digital economy on GTFP is stronger when 
the level of gtec exceeds a specific value. At this point, 
hypothesis 3 is verified.

Discussion

In this study, we constructed the DEA-SBM-ML 
model to measure GTFP. Here, we integrated the non-
expected outputs into the model and, unlike the static 
model, included the ML index. The indicator system 
here is also relatively more suitable for industrial use. 
Of course, as we mentioned earlier, the increase in green 
total factor productivity is not necessarily generated by 
advances in clean technology. Therefore, we need to 
fully consider the mechanism of action while examining 
the impact of the digital economy on green total 
factor productivity. In this way, we introduced green 

Table 9. Threshold regression results.

Threshold variable Double(2011-2019) Double(2011-2015) Double(2015-2019)

de (gtec≤γ1) 0.202***

(2.82)
0.180
(0.48)

0.256***

(2.91)

de (γ1≤gtec≤γ2) 0.420***

(8.54)
0.411***

(3.33)
0.437***

(2.96)

de (γ2≤gtec) 0.994***

(10.09)
0.669***

(5.41)
1.020***

(6.35)

fe 0.670
(0.44)

0.209*

(1.90)
0.240
(1.40)

nie -0.892***

(-7.08)
-0.287***

(-2.62)
-0.048
(-0.24)

eco 0.868***

(8.69)
1.201***

(13.58)
0.336
(1.14)

sav 0.173**

(2.09)
0.126***

(2.94)
0.336***

(5.14)

_cons -7.877***

(-6.67)
-7.532***

(-6.88)
-13.877***

(-9.29)

YEAR YES YES YES

CITY YES YES YES

N 2223 1235 1235

F 255.94 197.83 82.20
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technological innovation into the regression model and 
examined the moderating effect and threshold effect. At 
least from the feedback from the results of this study, 
we are assured that the green transition caused by the 
digital economy is transforming the production side. 
That is, digitization is fundamentally transformative 
for producers from the production side. And, for the 
time being, the threshold effect of green technologies 
is still very much in evidence. Interestingly, we found 
differences in the impact of the digital economy on the 
green transition over time. As mentioned in Results, 
the digital economy had not yet become a popularly 
recognized form of economy in the early days, and the 
technological conditions of communication at that time 
could not satisfy the adoption of digital technology by 
a large number of vendors, so we consider whether the 
intensity of the digital economy itself also has some 
impact on green total factor productivity. Of course, 
similar conclusions have been proven to be correct in 
this study [49]. Therefore, our study is basically in line 
with the existing similar conclusions. In other words, 
China’s industrial green TFP is in line with urban 
TFP in terms of the overall trend, which suggests that 
China’s economic growth is still exported through 
industrial orientation. Here, we can infer an interesting 
and unexpected result. The green transformation of 
China’s industry actually largely determines the degree 
of China’s green development transformation. How can 
we understand this conclusion? If there is a significant 
difference between the changes in industrial green 
total factor productivity and the changes in green total 
factor productivity, it indicates that industrial green 
transformation is ahead of or behind all sectors of green 
transformation, and the consumption growth pole that 
the Chinese government is committed to building has 
already taken shape. However, it has been proven that 
there has not been a clear differentiation between the 
two, which has been further confirmed in similar studies. 
In past studies, scholars have discussed various elements 
related to the green transition. Our new evidence affirms 
these findings from the prefecture-level industrial 
sector and examines the role of the digital economy 
at different levels, using green technologies as a new 
discriminant criterion. This adds ample evidence to past 
research on the digital economy and green development.  
As previously described, because of our more 
scientific and precise identification of green total factor 
productivity, the results are perhaps more rigorously 
demanded in actual experiments. In particular, with 
the introduction of the ML index, industrial green 
production is no longer an independent decision-making 
unit, and the dynamic model effectively overcomes the 
shortcomings of the static model. Because industrial 
production is a continuous and uninterrupted process, 
the dynamic model is more consistent with the facts. 
Fortunately, despite our strict constraints on the 
calculation of green total factor productivity, the digital 
economy still shows positive effects.

 Of course, there are some limitations to our study. 
This is unavoidable, but we hope that these limitations 
will provide new research directions for future work. 
Although we have pinpointed our study to the green 
transformation of the industrial sector in urban China, 
cities are still a larger area relative to manufacturers. 
Due to data limitations, we are unable to examine the 
differences between green total factor productivity 
across industries. However, such differences may 
in fact exist, and we believe that there may also be 
heterogeneity in the facilitating effects of the digital 
economy on different urban industrial clusters. This is 
an issue beyond our experimental design. In addition, 
although the supply side is a part of the functioning of 
the economy, the fact is that industrial output also affects 
production to a greater or lesser extent. Therefore, 
if a dynamic model is used to calculate GTFP, the 
consumption phase should also be included in the DEA 
model. Unfortunately, the consumption phase is not well 
identified by the data. Overall, however, our conclusions 
are scientifically credible.

Conclusions 

All conclusions point to the following conclusions: 
The rapid development of the digital economy has caused 
a series of changes in the industrial manufacturing 
industry, which has effectively promoted the 
improvement of GTFP in Chinese cities. Our empirical 
evidence from Chinese cities from 2011-2019 proves that 
the digital economy can fully serve as the spearhead 
of China’s “green reform”, and the digital economy 
plays an important role in this process. Then, we also 
discuss the role of green technological innovation in this 
process. We find that an increase in green technological 
innovation can effectively inflate the role of the digital 
economy and act as a threshold variable. In layman’s 
terms, when the level of green technological innovation 
in a region is high enough, the digital economy can 
contribute to GTFP more effectively. In the benchmark 
regressions, we examine regressions in different regions, 
similar to most past studies. Regions with lower levels 
of economic development have always struggled to 
benefit from the rapid development of the digital 
economy, while regions with higher levels of economic 
development have often been able to ride the “digital 
dividend”. 

Based on these findings, we can make some 
recommendations to promote China’s green transition. 
First, the Chinese government should strengthen 
the infrastructure of the digital economy, which has 
brought many real benefits to economic development 
and has been proven to contribute to China’s green 
development. In this process, it is necessary to pay 
attention to the development of the digital economy in 
some economically underdeveloped regions [50, 51]. We 
do not expect the digital economy in these regions to 
catch up with the developed regions, but we do not want 
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to see a wider digital divide. Of course, we also need 
to pay attention to the development of the industrial 
enterprises themselves in these regions; otherwise, the 
digital economy will have little effect on GTFP. 

The second point is that as digital technology 
matures, the cost of digital transformation for 
enterprises is getting lower and lower. The government 
can follow the trend and strengthen the subsidization of 
green finance and other policies to induce enterprises 
to transform into cleaner production. We are convinced 
that the level of green technological innovation largely 
affects the size of the digital economy’s role in GTFP 
[52-54]. After the abolition of sewage charges in 2018, 
the Chinese government has fewer direct regulatory 
tools. Of course, much of this is due to the fact that a 
portion of the funds are being used to compensate for 
innovation. In short, encouraging green technological 
innovation is good for both the digital economy and 
green total factor productivity [55]. 

Thirdly, we should also see that many factors 
influence GTFP in different regions and at different 
times. These factors are both positive and negative.  
This shows that the digital economy can have different 
effects in different regions. This requires local 
governments to make corresponding adjustments 
according to their own situation when facing the central 
government simulation. China’s development has 
obvious stages, and the biggest imbalance in China is 
seen between regions. Such an imbalance is shown in 
time and space [56]. Therefore, how to utilize the digital 
economy is a major issue that local governments need 
to think deeply about. In particular, when dealing with 
some investment projects, these local governments 
should give due consideration to revenue returns. While 
such investments could be seen as transformational 
funds for green development, it is important to consider 
the limited nature of the returns, and they should not 
blindly develop the “digital economy” in isolation from 
the actual situation, nor should they see it as a new 
opportunity to enhance their status [57].
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