
Introduction

The Intergovernmental Panel on Climate Change’s 
(IPCC) fifth assessment report unequivocally 
underscores the intensification of global warming, 
predominantly caused by human activities. 

Consequently, addressing the impact of human actions 
on the environment through greenhouse gas emission 
reduction has become a paramount concern for humanity. 
A cost-efficient approach to combat global warming is to 
establish a carbon market, wherein the pivotal challenge 
lies in allocating carbon emission quotas. The allocation 
of carbon quotas typically involves negotiations between 
the government and diverse enterprises, constituting  
a consensus problem [1].
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Abstract

Global warming, mainly caused by human activities, demands urgent reduction of greenhouse gas 
emissions. Establishing a carbon market central to this effort involves the allocation of carbon emission 
quotas. The uncertainty of consensus cost in the carbon market will bring the risk of loss to the whole 
consensus process. In this paper, we focus on solving the problem of group consensus decision with 
risk averse decision maker. First, three new distributionally robust two-stage minimum asymmetric 
adjustment cost consensus models based on conditional value at risk (CVaR) are proposed. Considering 
that it is difficult to obtain historical decision-making data with risk in the carbon market, a novel box 
ambiguous set and a polyhedron ambiguous set are constructed, respectively. The risk expectation 
cost of group consensus decision-making problem under the worst-case condition is measured. Then, 
a computable linear equivalent form of the proposed model is derived in order to facilitate calculation. 
Finally, numerical cases based on carbon emission quotas are carried out. The numerical results show 
that the consensus cost of this method is better than the results under the stochastic programming 
method, and it brings new solutions to the group decision-making progress in the allocation of carbon 
emission quotas.

Keywords: global warming, carbon emission quotas, group decision making, distributionally robust,  
two-stage asymmetric cost, minimum cost consensus, CVaR
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So, the allocation of carbon quotas can be seen as the 
group decision-making [2-4]. Group decision-making 
is to give full play to the collective wisdom. Numerous 
participate in the overall process of decision analysis 
and decision-making. When making decisions on 
alternatives, because the decision makers often belong 
to different organizations and have different identities 
and knowledge backgrounds, the decision makers often 
have different opinions during the decision-making. 
At this time, a moderator with rich negotiation and 
communication experience and personality charm is 
needed to coordinate all decision makers, so that they 
can change their views and finally reach an agreement. 
However, in the coordination process, the moderator 
always needs to spend some resources to coordinate the 
decision-makers. In this process, the moderator always 
wants to spend the least resources and finally reach a 
consensus [3, 5-9].

Among many research problems of group decision-
making, how to minimize the adjustment cost of 
individual opinions in what we call the consensus 
reaching process, is a classical problem. Ben-Arieh et 
al. [10] supposed that the cost of adjusting opinions is 
linear and studied the issue of minimum cost consensus 
without budgetary constraints. Ben-Arieh et al. [11] also 
studied the group consensus costs, and proposed three 
methods of reaching consensus. In order to study the 
problem of adjusting opinions between the moderator 
and the individual, Gong et al. [12] proposed two new 
types of consensus reaching models, which are involved 
in minimum cost and maximum return. Ji et al. [13] 
proposed Risk Maximum Expert Consensus Model 
(RMECM) based on mean-variance (MV) theory to 
account for risk factors. The Robust Risk Maximum 
Expert Consensus Model (R-RMECM) is developed 
to address uncertainties arising from estimation errors 
in the mean and covariance matrix of unit adjustment 
cost. Dong et al. [14] introduced the consensus 
opinion operator into the decision-making problems 
first, and the consensus opinion operator adopted the 
ordered weighted averaging operator and measured the 
deviation. According to previous studies, Zhang et al. 
[15] added an aggregation operator into the minimum 
cost consensus (MCC) model and introduced the idea of 
soft consensus into the model. Cheng et al. [16] studied 
the asymmetry in the unit up-adjustment and down-
adjustment costs, and three new asymmetry models 
are proposed: MCCM-DC model, the ε-MCCM-DC 
model and TB-MCCM-DC model. Based on the above 
research, Li et al. [17] studied the uncertain scenarios 
and extended three models, uncertain unit adjustment 
cost, and initial opinion, which are based on different 
scenarios discussed. The two-stage stochastic 
programming is the main method to analyze uncertain 
parameters.

Existing group-decision-making (GDM) studies 
always deem that the unit adjustment cost ci, the initial 
opinion oi in MCC model are known, but the real world 
is complex and changeable, ci and oi are generally 

uncertain. So, combining optimization theory with 
cost consensus problems for group decision-making 
in uncertain environments is an important branch of 
research. Stochastic Programming (SP) and Robust 
Optimization (RO) are two research ideas that exist in 
existing research approaches to dispose of uncertainties 
in cost consensus problems [18-21].

In the stochastic programming method, Gong et 
al. [22] pioneered to combine group decision-making 
with uncertainty theory to establish a bridge between 
deterministic group decision and uncertainty theory, 
and the preferences of decision individuals are fitted 
using belief degree and uncertainty distribution to 
construct an opportunity constrained minimum cost 
consensus model. Ji et al. [23] studied the strategy 
weight manipulation problem with uncertainty, which 
applies the uncertainty theory based on confidence 
degree, and assumed that the uncertain attributes’ 
values obey uncertainty distribution of linearity, and 
then constructed a series of hybrid 0-1 planning models, 
set the strategy weight vector for the required ranking 
of specific alternatives. The numerical case results 
of COVID-19 vaccine can reflect the effectiveness of 
the model well. Liu et al. [24] considered the real-life 
management problem of “nail households” in urban 
demolition and eviction, which is a frequent scenario 
in urban evolution and renewal, and the problem of 
“nail households” often plagues governments, property 
developers, and homeowners. As a classic case study, the 
minimum cost consensus model, multivariate planning, 
stochastic chance constrained planning and interval 
number are applied jointly to build a multi-objective 
minimum cost consensus model based on interval 
number constraints. But the method relies heavily on the 
decision maker’s portrayal of the information of the true 
probability distribution. 

In the robust optimization method, Han et al. 
[25] considered the uncertainty in the input data and 
established the minimum cost consensus model based 
on the RO method with four different uncertainty sets. 
Wei et al. [26] proposed three robust consensus models 
which used three different aggregation operators, and 
set novel Box ambiguous set, Ellipsoid ambiguous set, 
and Polyhedron ambiguous set to study. Jin et al. [27] 
used the RO method to study the MADM problem 
and established mixed 0–1 robust optimization model. 
But in RO models, these worst-case scenarios do not 
necessarily occur, so consensus cost problems studied 
by robust optimization-based approaches [1] inevitably 
lead to over-conservative results.

Although SP and RO are relatively mature methods 
to study uncertainty problems, the disadvantages 
of these two methods are also obvious: the results 
of SP are vulnerable to the accuracy of unknown 
parameter estimation and the results of RO are too 
conservative. Therefore, a more reasonable method 
is needed to deal with uncertainty to ensure that the 
results are more in line with social reality. In recent 
years, the Distributionally Robust Optimization (DRO) 
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approach, which has the advantages of SP and RO, is 
proposed and has been well studied [18, 28-31]. DRO 
can effectively deal with the uncertainty caused by 
complex environment, DRO can effectively solve some 
problems of RO and SP, combining statistical learning 
and optimization theory to obtain a sufficiently good 
solution by assuming that the parameters follow certain 
possible distributions. DRO has found an ambiguity 
set that contains the true probability distribution of 
the problem’s random variables. We can fully utilize 
historical data to construct this ambiguity set and solve 
the problem. In this study, we adopt the DRO method 
to avoid the model being too conservative, while also 
making good use of historical data, ensuring that 
the model can have good applicability in uncertain 
environments. But MCCM problems in an uncertain 
environment will be accompanied by risks, which 
cannot be completely ignored. The Conditional Value at 
Risk (CVaR) is a conditional risk measure used to assess 
financial investment risk. Currently, in the field of group 
decision-making, more and more researchers are also 
using CVaR when considering risks and its advantages 
include:

Tail Risk Consideration: CVaR focuses on the 
average loss of a portfolio when losses exceed a certain 
threshold, providing a more comprehensive view of tail 
risk and better reflecting the extreme events.

Convexity: CVaR is a convex function, making it 
easier to handle in risk optimization models. Convex 
optimization problems are generally easier to solve, and 
CVaR has an advantage in this regard.

Interpretability: The definition of CVaR is relatively 
simple – it is the average loss when losses exceed  
a certain threshold. This simplicity makes CVaR easy 
to interpret and understand for investors and decision-
makers.

Due to the above advantages, using the CVaR 
risk criterion can offset the adverse effects of random 
variability in the models.

Based on the above findings, this paper uses DRO 
and CVaR approximation in the TB-MCCM problem, so 
as to deal with the uncertainty and risk respectively.

The main contributions of this paper are summarized 
as follows.

(1) Three new distributionally robust two-stage 
minimum asymmetric adjustment cost consensus 
models based on CVaR are proposed.

(2) Considering that it is very difficult to obtain 
historical decision-making data with risk in the carbon 
market, novel box ambiguous set and polyhedron 
ambiguous set are constructed, respectively.

(3) The risk expectation cost of the allocation of 
carbon emission quotas problem under the worst-case 
condition is measured and three computable linear 
equivalent forms of the proposed models are derived in 
order to facilitate calculation.

The rest of this paper is organized as follows.
Section 2 introduces the background and prior 

knowledge of the minimum cost consensus model, the 

distributionally robust optimization theory, a coherent 
risk measure and presents three new distributionally 
robust two-stage minimum asymmetric adjustment cost 
consensus models and two ambiguous sets. Section 3 
includes numerical examples based on carbon emission 
quotas and some discussions. Section 5 concludes and 
presents future work.

Material and Methods

Material

The material used in this paper is some prior 
knowledge of the minimum cost consensus model, 
the distributionally robust optimization theory and a 
coherent risk measure.

In the minimum cost consensus problem, there are 
n decision makers participating in the discussion. Let oi 
represent the initial opinion, õ represent the consensus 
opinion and ci represent the cost adjusting the initial 
opinion to the consensus opinion. Finally, the model can 
be described as follows [12]:
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Cheng et al. [16] analyzed the model  and found that 
ci is symmetrical. According to the actual situation, 
three new minimum cost consensus models with costs 
which are different in different adjustment directions are 
proposed. Based on Cheng’s models, the following two-
stage stochastic minimum cost consensus models are 
given by Li et al. [17]. 

Based on Cheng’s MCCM-DC model, the two-stage 
stochastic programming method is used and the two-
stage stochastic MCCM-DC can be given:
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where ϖ is random event, ( )1 ,ξ ϖ  Q o  is the optimal 
value for the second stage recourse problem, õ is the 
consensus opinion, ( ) { ( ), ( )}c oξ ϖ ϖ ϖ= and the 
second stage problem is as follows:
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Based on Cheng’s ε-MCCM-DC model, the two-
stage stochastic programming method is used and the 
two-stage stochastic  ε-MCCM-DC  can be given:
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where ϖ is random event, ( )2 ,ξ ϖ  Q o  is the optimal 
value for the second stage recourse problem, õ is the 
consensus opinion, ( ) { ( ), ( )}c oξ ϖ ϖ ϖ= and the 
second stage problem is as follows:
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Based on Cheng’s TB-MCCM-DC model, the two-
stage stochastic programming method is used and the 
two-stage stochastic TB-MCCM-DC can be given:
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where ϖ is random event, ( )3 ,ξ ϖ  Q o  is the optimal 
value for the second stage recourse problem, õ is the 
consensus opinion, ( ) { ( ), ( )}c oξ ϖ ϖ ϖ= and the 
second stage problem is as follows:
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Distributionally Robust Optimization Method

The distributed robust optimization model combines 
the advantages of SP and RO, and the expression is as 
follows:
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where x is the decision variable, X is the decision space 
of x, ( )Tc xξ  is the objective function with random 
variables, [ ]~ξ ⋅PE  is the expectation operator, ξ is 
the column vector of random variables, P is a certain 
probability distribution of ξ, sup is the abbreviation of 
supremum and P is the ambiguous set which contains 
all possible probability distributions.

A Coherent Risk Measure

Suppose ( ), : nx R Rµ ξ ×Ω→  is a measurable 
loss function. The probability of μ(x, ξ) not exceeding a 
certain threshold ζ can be expressed as

( )
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, : ( )
x

x p d
µ ξ ζ

ζ ξ ξ
≤

Ψ = ∫ . Value at risk (VaR) is 

defined as follows.
Definition 2.1. [32] Assume that β∈(0,1) is a given 

confidence level and the function Ψ(x, ξ) is continuous 
everywhere about ζ. The measure of risk called VaR can 
be expressed as:
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where ζ is the threshold value and p(∙) is the probability 
density function of the random variable.

Artzner et al. [33] proposed the concept of consistent 
risk measures, i.e., risk measures should satisfy 
positivity, chi-squaredness, and subadditivity. Since 
VaR does not satisfy subadditivity, it is not a consistent 
risk measure. Rockafellar et al. propose a consistent risk 
measure, CVaR, which is defined as follows.
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parameter, is an important parameter used in the 
formula to balance the expected value and the 
conditional risk function value (CVaR). The value range 
of is λ [0,1]. When λ = 0, it indicates that the formula 
does not consider possible risks at all, while when λ = 1, 
it indicates that the formula is a complete risk preference 
type, and the setting of this parameter is influenced by 
the decision-maker’s risk preference. And the following 
risk-adjusted cost consensus model (RDRO-DC) with 
different opinion adjustment directions is given:
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where ( )( )1 ,ξ ϖQ o  is the optimal value of the second 
stage recourse problem, λ∈[0,1] represents the risk 
aversion measure and the second stage problem is as 
follows:
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probability distribution P, i.e., the minimum-maximum 
robustness criterion.

Model Construction Considering Risk 
Aversion with Compromise Limits

Similarly, the following worst-case CVaR 
distribution-based robust model is proposed for the 
cost consensus modeling problem in conjunction with 
the finite compromise constraint εi. Let oi(ϖ) denote 
the uncertain initial opinion of DMi. There are two 
uncertain unit adjustment costs on opinion modification 
in different directions ci

D(ϖ) and ci
U(ϖ). Assuming 

( ) ( ) ( ) ( ){ }, ,UDT T T T
i i ic cξ ϖ ϖ ϖ ε ϖ= , the following 

risk-adjusted cost consensus model with compromise 
limit in different opinion adjustment directions 
(ε-RDRO-DC) is given:

Definition 2.2. [34] Suppose β∈(0,1) is a given 
confidence level and the function Ψ(x, ξ) is continuous 
everywhere about ζ. The mean of the β truncated tail 
distribution of the loss function μ(x, ξ) and it can be 
defined as:
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where p(∙) is the probability density function of the 
random variable.

Obviously, CVaR indicates that the risk loss is not 
less than the expected value of VaR. Since the defining 
equation of CVaR is not easy to calculate under 
continuous random variables, Rockafellar et al. [34] give 
an approximate calculation method that CVaR can be 
equivalently transformed into

 
( ) ( )min , ,

R
CVaR x F xβ βζ

ζ
∈

=

where

 
( ) ( ) ( )1, : ,

1 nR
F x x p dβ ξ

ζ ζ µ ξ ζ ξ ξ
β

+

∈
= + −  − ∫

.
The calculation of Fβ(x, ζ) involves multivariate, non-

smooth functions with difficult integration problems. 
The CVaR approximation under discrete random 
variables is given by Rockafellar et al. as follows:
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where n indicates the number of scenarios and pi  
indicates the probability of occurrence of the i scenario.

Lemma 2.1. [35] Assume that β∈(0,1) and pi denote 
the probability of occurrence of scenario i. The CVaR 
minimization problem on x∈X is equivalent to the 
minimization of Fβ(x, ζ) on (x, ζ)∈X×R, i.e.
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Since [∙]+ is a convex function, Fβ(x, ζ) is also convex 
with respect to (x, ζ)∈X×R.

Methods

Model Construction Considering Risk Aversion 
with Different Opinion Adjustment Directions

Let oi(ϖ) denote the uncertain initial opinion  
of DMi. There are two uncertain unit adjustment  
costs on opinion modification in different directions 
ci

D(ϖ) and ci
U(ϖ). Assuming 

( ) ( ) ( ) ( ){ }, ,UDT T T T
i i ic c oξ ϖ ϖ ϖ ϖ= , λ as a trade-off 
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where ( )( )2 ,ξ ϖQ o  is the optimal value of the second 
stage recourse problem, λ∈[0,1] represents the risk 
aversion measure and the second stage problem is as 
follows:
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P P  is the worst case of the probability distribution 
P, i.e., the minimum-maximum robustness criterion.

Model Construction Considering Risk-
Averse Cost-Free Thresholds

Assuming uncertainty
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where ( )( )3 ,ξ ϖQ o  is the optimal value of the second 

stage recourse problem, λ∈[0,1] represents the risk 
aversion measure and the second stage problem is as 
follows:
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P P  is the worst case of the probability distribution 
P, i.e., the minimum-maximum robustness criterion.

Construction of Ambiguous Sets

Two kinds of ambiguous sets, box ambiguous set P1  
and polyhedral ambiguous set P2 are constructed [36]:

 { }1 0 ,0,Tp p eπ π π
∞

= + == ≤ ΨP
    (22)

{ }12 1 0 10 1 ,0, 0, 1Tep p pπ π π π== = + ≥ ≤+P P PP
(23)

where p0 is the nominal distribution of discrete 
probabilities, i.e., the distribution with the 
highest probability; e is the unit vector; SRπ ∈  
is the perturbation vector; [ ]0,1Ψ∈  is the upper 
limit of fluctuations; and 1

S SR ×∈P  is the known 
perturbation matrix. In polyhedral ambiguous 
set, the condition 1 0Te π =P  and the non-
negative constraint 0 1 0p π+ ≥P  ensure that p  
conforms to the non-negative properties of the 
probability distribution.

To specify the simplest ambiguous set, it is sensible 
to consider box-type set and polyhedral ambiguous 
set, and the resulting problem can be formulated  
in a computationally tractable way.
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Linear Equivalent Reconstruction of the Model

Model Reconstruction Considering Risk Aversion 
with Different Opinion Adjustment Directions

Through simplification, CVaR is transformed into a 
computable equation, it is given by:

( )( ) ( )( ), ,
T

max m xx xaξ ϖ ξ ϖ
∈ ∈

  =  ，PP P
E P 

P P
Q Q

(24)

where the probability P has finite support Ω, and 

( )2 | |1, , ,
T

Ω= P P P P , 0ϖ >P  is the probability of 

random event ϖ and 1ϖ
ϖ∈Ω

=∑ P .

According to Definition 2.2, ( )( ),CVaR x ξ ϖ  Q  
can be transformed into

( )( ) ( )( )( ),
1, , ,

1R
CVaR x min max xα

η
ξ ϖ η ξ ϖ η

α+

+

∈∈

    = + −     − P
Q QP PP

E
 

(25)

where α represents the degree of risk. When α = 0, 

( )( ), ,xCVaRα ξ ϖ  P Q  will express as neutral. In 

contrast, when α → 1, ( )( ), ,xCVaRα ξ ϖ  P Q  will 
express highly risk-averse, η represents the maximum 
loss suffered by the function ( )( ),x ξ ϖQ  for a given 
α.

The auxiliary vector ( )2 | |1, ,
T

t t t tΩ=  t  are 
introduced into Eq. (25), the Eq. (25) is converted to the 
following form:

 

( )( )

1
1

. . , .

0.

T

R
min max t

s t x e t

t

η
η

α
ξ ϖ η

+ ∈∈
+

−
− ≤

≥

P

Q
P

P

 (26)

Based on the Eq. (25), The objective function of the 
model (13) can be transformed into

( ) ( )( )[ ] ( )( )( )( )~ 1 ~ 1

1
1 , , .

1o R

min sup min
ξ ξ

η

λ ξ ϖ λ η ξ ϖ η
α+

+

∈∈

− + + −
−

  


 
P

Q Q
P P

P

E Eo o
 

   (27)

The order of the operators sup
∈P P  and R

min
η +∈  can be 

changed according to the strongly maximal-minimal 

nature of ( )( )1 ,ξ ϖQ o :

 

( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

~ 1 ~ 1

~ 1 ~ 1

~ 1 ~ 1

1
1 , , .

1
1

1 , ,
1

1 max , max , .
1

R

R

R

sup min

min sup

min

ξ ξ
η

ξ ξ
η

ξ ξ
η

λ ξ ϖ λ η ξ ϖ η
α

λ ξ ϖ λ η ξ ϖ η
α

λ
λη λ ξ ϖ ξ ϖ η

α

+

+

+

+

∈∈

+

∈ ∈

+

∈ ∈∈

− + + −
−

= − + + −
−

= + − + −
−

     
     

  

 

 

 

P

P

P P

Q Q

Q Q

Q Q

P P
P

P P
P

P P
P P

E E

E E

E E

o o

o o

o o
    

(28)

Therefore, the proposed RDRO-DC model (13) can 
be equivalently expressed as

 

( ) ( )( )

( )( )( )
1~

~ 1

,

.
1

1

,

.

,

,

. min max

o

o o o

min max

m

t

a

s

x

ξη

ξ

λη λ ξ ϖ

λ ξ ϖ η
α

∈

+

∈

≤ ≤

+  −  

 +   
−

−









PP

PP

E

E

P

P

Q

Q

o

o

    
(29)

where ( )( )~ 1 ,max ξ ξ ϖ
∈

 
 PP

E
P

Q o  and 

( )( )( )~ 1 ,max ξ ξ ϖ η
+

∈

 
  

−PP
E

P
Q o  depend on the 

ambiguous set properties of the discrete probability 
distribution.

Theorem 2.1. Under the box ambiguous set P1, the 
model (29) can be rewritten as follows:

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

,

, ,

0,

0

,

, 0, 0, 0

.

.

,

1

.

mi

T

n

T

max

T T T T

o

 

m p p

s t e

e

e

o

       Constraints (3.2) - ( 3

in t

t

t

t

o

)

o

3.

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ +−

=

+ + +

−

+ Ψ Ψ Ψ
−

− +

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

     









Q

Q

Q

o

o

o

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

,

, ,

0,

0

,

, 0, 0, 0

.

.

,

1

.

mi

T

n

T

max

T T T T

o

 

m p p

s t e

e

e

o

       Constraints (3.2) - ( 3

in t

t

t

t

o

)

o

3.

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ +−

=

+ + +

−

+ Ψ Ψ Ψ
−

− +

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

     









Q

Q

Q

o

o

o

 

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

,

, ,

0,

0

,

, 0, 0, 0

.

.

,

1

.

mi

T

n

T

max

T T T T

o

 

m p p

s t e

e

e

o

       Constraints (3.2) - ( 3

in t

t

t

t

o

)

o

3.

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ +−

=

+ + +

−

+ Ψ Ψ Ψ
−

− +

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

     









Q

Q

Q

o

o

o

    (30)

where
1 1 1 1' ' ', , , , , R R R R R Rµ β γ µ β γ ∈ × × × × ×P P P P

 are 
the auxiliary variables.

Proof: The Eq. (24) can be deduced that

( )( ) ( )( )
1 1

~ 1 1 ,, ,
T

max maxξ ξ ϖ ξ ϖ
∈ ∈

  =  PP P
E P

P P
Q Qo o

 
   (31)

Therefore, the equivalent form of 



Zhenhua Dai, et al.5072

( )( )( )
1

~ 1 ,max ξ ξ ϖ η
+

∈

 
 

−


PP
E

P
Q o  can be expressed 

as

 

( )( )
1

1 , .

0

. .

Tmax t

t

t

s t eξ ϖ η
∈

≤

≥

−

P
P

P

Q o

    (32)

Under the box ambiguous set, the model (31) and (32) 
are linear programming problems and the model (31) is 
given by the following equation

 
( )( ) ( )( ) ( )( ){ }

1

1 1 0 1, , , 0, ,T T T Tmax max ep
π

ξ ϖ ξ ϖ ξ ϖ π π π
∞

∈
≤ Ψ+= =  

P
P

P
Q Q Qo o o

 
   (33)

among them, 
11

max ωϖ
π π

∞ ≤ ≤
≤

P
.

In turn, ( )( ){ }1 , 0,T Tmax e
π

ξ ϖ π π π
∞

= ≤ ΨQ o  

can be rewritten as

 

( )( )1 ,

. . 0,
,

,

T

T

ma

e

x

s t
π

ξ ϖ π

π
π

π

=
− ≤ Ψ
≤ Ψ

Q o

    (34)

among them, eψΨ = .
According to the strong duality theory, we can get:

 

( )( )
. ,

1. . ,

0, 0

.

T Tm

e

in

s t
µ β γ

β γ

µ β γ ξ ϖ

β γ

Ψ +Ψ

− + =

≥ ≥

Q o

    (35)

Therefore, the pairwise form of the (31) is expressed 
as follows:

 

( )( )
( )( )

1 0. ,

1

,

. . ,

0, 0

.

T T Tm

s

pn

t e

i
µ β γ

ξ ϖ β γ

µ β γ ξ ϖ

β γ

Ψ

≥

+ +Ψ

− + =

≥





Q

Q

o

o

    (36)

In this way, the model (32) of the pairwise planning 
can be derived in the following form

 

( )( )

' ' '

' '
0

, ,

' ' '

1

' '

. .
, .

0
0, 0

T T Tm pin t

s t t
e t

e

t

µ β γ
β γ

µ β γ

ξ ϖ η

β γ

Ψ +Ψ

− + =

≤

≥

≥ ≥

+

−Q o

    (37)

In summary, the model (29) is given by

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

, .

0

0, 0,

.

0, 0

1

.

T T T T T

min max

T

o

 

m

(

in p p

s t e

e

e

o

Constraints 3.2) - (3.3)

t

t

t

t

o o

       

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

, .

0

0, 0,

.

0, 0

1

.

T T T T T

min max

T

o

 

m

(

in p p

s t e

e

e

o

Constraints 3.2) - (3.3)

t

t

t

t

o o

       

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

 

( ) ( )( )

( )( )

( )( )

' '

1 0 0
,

1

' ' '

1

' '

,
1

,

, .

0

0, 0,

.

0, 0

1

.

T T T T T

min max

T

o

 

m

(

in p p

s t e

e

e

o

Constraints 3.2) - (3.3)

t

t

t

t

o o

       

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

    (38)

With the above proof, it is possible to obtain the 
model (29) computable reconstruction under the box 
ambiguous set.

Theorem 2.2. Under the polyhedral ambiguous set 
P2, the model (29) can be rewritten as follows:

( ) ( )( )

( )( )

( )( )

' ' '

' '

1 0 0 0 0
, , , , , , ,

1 1 1 1

' ' '

1 1 1

1

' '

1
1 ,

,

, ,

0

0, 0, 0, 0

. .

T T T T

o v v

T

min max

T T

T T T

p p p p

s t

e

o

                           Constrai

min v t v

e v

t e v

t

t

o o

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +
−

+ ≤

+ ≤

≤

≥

≥ ≥

−

+

≥ ≥

+

≤ ≤

− + +

+

     










P P P

P P P

Q

Q

Q

o

o

o

nts (3.2) - (3.3) 

 

   
( ) ( )( )

( )( )

( )( )

' ' '

' '

1 0 0 0 0
, , , , , , ,

1 1 1 1

' ' '

1 1 1

1

' '

1
1 ,

,

, ,

0

0, 0, 0, 0

. .

T T T T

o v v

T

min max

T T

T T T

p p p p

s t

e

o

                           Constrai

min v t v

e v

t e v

t

t

o o

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +
−

+ ≤

+ ≤

≤

≥

≥ ≥

−

+

≥ ≥

+

≤ ≤

− + +

+

     










P P P

P P P

Q

Q

Q

o

o

o

nts (3.2) - (3.3)  

( ) ( )( )

( )( )

( )( )

' ' '

' '

1 0 0 0 0
, , , , , , ,

1 1 1 1

' ' '

1 1 1

1

' '

1
1 ,

,

, ,

0

0, 0, 0, 0

. .

T T T T

o v v

T

min max

T T

T T T

p p p p

s t

e

o

                           Constrai

min v t v

e v

t e v

t

t

o o

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +
−

+ ≤

+ ≤

≤

≥

≥ ≥

−

+

≥ ≥

+

≤ ≤

− + +

+

     










P P P

P P P

Q

Q

Q

o

o

o

nts (3.2) - (3.3)  (39)

where 2 2' ' ', , , , ,v v R R R R R Rθ ζ θ ζ ∈ × × × × ×P P  
are the auxiliary variables.

Proof: Under the polyhedral ambiguous set, it can be 
deduced that

( )( )

( )( ) ( )( ){ }
( )( ) ( )( )( )

2

1

1

1 0 1 1 1 0 1

*

1 0 1

,

, , 0, 0, 1

, ,

,

T

T T T

T

max

max ep p

p

π

ξ ϖ

ξ ϖ ξ ϖ π π π π

ξ ϖ ξ ϖ

∈

= = ≥ ≤

=

+ +

Γ+



 

 

o

o o

o o

P
P

P P P

P
Q

Q Q

Q Q  
   (40)

where 
21

1
max
ϖ

ϖπ π
≤ ≤

≤
P

 and ( )( )( )*
1 ,ξ ϖΓ Q o  are the 

optimal values for the following convex problems:
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( )( ){ }1 1 1 0 1 1
, 0, 0, 1 .

T Tmax pe
π

ξ ϖ π π π π+= ≥ ≤ P P PQ o
    

(41)

The Lagrangian function of model (41) is described 
as follows:

 ( ) ( )( ) ( ) ( )1 1 0 1 1 1
, , , , 1 .

T T Tv p e vπ θ ζ ξ ϖ π θ π ζ π π= + + + −+ P P PL Q o
    

(42)

The Lagrangian pairwise function of model (41) is 
described as follows:

 

( ) ( )

( )( )( ){ }
( )( )( )

0 1 1 1 1 1

*
0 1 1 1 1

, , , , ,

, ,

,

T T T T

T T T T

g v max v

v max

p

v

v f

p e

e

π

π

θ ζ π θ ζ

θ ξ ϖ θ ζ π π

θ ξ ϖ θ ζ

=

= + + + + −

= + + + +





P P P

P P P

L

Q

Q

o

o
 

   (43)

where

( )( )( ) ( )( )1 1 1 1*

1 1 1 1

0 ,
, .

T T T

T T T
v

f
e

e
otherwise

ξ ϖ θ ζ
ξ ϖ θ ζ ∞

+ + ≤
+ + =

∞








P P P
P P P

Q
Q

o
o

 
   (44)

Therefore, the dual of the (41) is the following 
problem:

( )( ){ }10 1 1 1, ,
, , 0, .0T T T T

v
m ein p v v
θ ζ

θ ξ ϖ θ ζ θ ζ
∞

+ + + ≤ ≥ ≥P P PQ o
 

   (45)

On this basis, the model (31) of the equivalence 
planning can be expressed as follows:

 

( )( )
( )( )

, 01 0.

1 1 1 1

,

. . , .

0, 0,

T T

T T T

m p pin v

s t ve
µ β γ

ξ ϖ θ

ξ ϖ θ ζ

θ ζ
∞

+

+

+

+ ≤

≥ ≥



P P P

Q

Q

o

o

 (46)

Similarly, the model (32) of the equivalent form can 
be rewritten as

 

( )( )

' ' '

' '
0 0

, ,

' ' '
1 1 1

1

' '

, .

0
0, 0

. .

T T

v

T T T

p p

s
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t

e
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t e v

t

t

θ ζ
θ

θ ζ

ξ ϖ η

θ ζ

∞

+

+ ≤

≤

≥

+

−

≥

+

≥



P P P

Q o

    (47)

In summary, the model (29) is given by

( ) ( )( )

( )( )

( )( )

' ' '

' '
1 0 0 0 0

, , , , , , ,

1 1 1 1

' ' '
1 1 1

1

' '

,
1

,

, .

0

0, 0, 0, 0

1

. .

T T T T

o v v

T T T

T T T

min v t v

e v

t e v

t

p p p p
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e

t
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                    Constraints (3.2)- (3.3) 

η θ ζ θ ζ

λ
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α
ξ ϖ θ ζ

θ ζ

ξ ϖ η
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∞

∞
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−

+ ≤

+ ≤

≤

+

≥

≥ ≥ ≥ ≥

− + +
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P P P
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Q

Q

o

o

o

 
   (48)

With the above proof, it is possible to obtain the 
model (29) computably reconfigurable under the 
polyhedral ambiguous set.

Considering Risk Aversion with Compromise 
Limits for Model Refactoring

Based on the Eq. (25), the objective function of the 
model (16) can be transformed into

( ) ( )( )[ ] ( )( )( )( )~ 2 ~ 2

1
1 , , .

1o R

min sup min
ξ ξ

η

λ ξ ϖ λ η ξ ϖ η
α+

+

∈∈

− + + −
−

  


 
P

Q Q
P P

P

E Eo o
 

   (49)

The order of the operators sup
∈P P  and R

min
η +∈  can be 

changed according to the strongly maximal-minimal 
nature of ( )( )2 ,ξ ϖQ o :

( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

~ 2 ~ 2

~ 2 ~ 2

~ 2 ~ 2

1
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1
1

1 , ,
1

1 , ,
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R

R

R

sup min

min sup

min max max

ξ ξ
η

ξ ξ
η

ξ ξ
η

λ ξ ϖ λ η ξ ϖ η
α

λ ξ ϖ λ η ξ ϖ η
α

λ
λη λ ξ ϖ ξ ϖ η

α

+

+

+

+

∈∈

+

∈ ∈

+

∈ ∈∈

− + + −
−

= − + + −
−

= + − + −
−

     
     

  

 

 

 

P

P

P P

Q Q

Q Q

Q Q

P P
P

P P
P

P P
P P

E E

E E

E E

o o

o o

o o
 

   (50)

Therefore, the proposed ε-RDRO-DC model (16) can 
be equivalently expressed as

 

( ) ( )( )[ ] ( )( )( )~2 2~
,

1 , ,
1

,

. .
min max

o

o o o

min max max

s t

ξ ξ
η

λ
λη λ ξ ϖ ξ ϖ η

α
+

∈ ∈

≤ ≤

− ++ −
−

  



 
P P

P P
E E

P P
Q Qo o

 
   (51)

where ( )( )~ 2 ,max ξ ξ ϖ
∈

 
 PP

E
P

Q o  and 

( )( )( )~ 2 ,max ξ ξ ϖ η
+

∈

 
  

−PP
E

P
Q o  depend on the 

ambiguous set properties of the discrete probability 
distribution.
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Theorem 2.3. Under the box ambiguous set P1, the 
model (51) can be rewritten as follows:

( ) ( )( )

( )( )
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2

2

' '

2

,
1

,

, ,

0

0, 0, 0,

1

. .

0

i

T T T T T T

o

m n max

p a p

s t e

e

e

o

       Constraints (3.5) - (3.6) 

min t

t

t

t

o o

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

− + + ++ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

−

     









Q

Q

Q

o

o

o

( ) ( )( )

( )( )

( )( )

' '

0 0
,

' ' '

2

2

' '

2

,
1

,

, ,

0

0, 0, 0,

1

. .

0

i

T T T T T T

o

m n max

p a p

s t e

e

e

o

       Constraints (3.5) - (3.6) 

min t

t

t

t

o o

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

− + + ++ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

−

     









Q

Q

Q

o

o

o

 

( ) ( )( )

( )( )

( )( )

' '

0 0
,

' ' '

2

2

' '

2

,
1

,

, ,

0

0, 0, 0,

1

. .

0

i

T T T T T T

o

m n max

p a p

s t e

e

e

o

       Constraints (3.5) - (3.6) 

min t

t

t

t

o o

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

− + + ++ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

−

     









Q

Q

Q

o

o

o

    (52)

where 1 1 1 1' ' ', , , , , R R R R R Rµ β γ µ β γ ∈ × × × × ×P P P P  
are the auxiliary variables.

Proof: The formula (24) can be deduced that

( )( ) ( )( )
1 1

~ 2 2, ,
T

max maxξ ξ ϖ ξ ϖ
∈ ∈

  =  PP P
E P.

P P
Q Qo o

  (53)

Therefore, the equivalent form of 

( )( )( )
1

2~ ,max ξ ξ ϖ η
+

∈

 
 

−


PP
E

P
Q o  can be expressed as

 

( )( )
1

2 , .

0

. .

Tmax t

t

t

s t eξ ϖ η
∈

≤

≥

−

P
P

P

Q o

    (54)

Under the box ambiguous set, the model (53) and 
(54) are linear programming problems and the model 
(53) is given by the following equation:

( )( ) ( )( ) ( )( ){ }
1

02 2 2
, , , 0, ,

T T T Tmax max ep
π

ξ ϖ ξ ϖ ξ ϖ π π π
∞

∈

≤ Ψ+= =  
P

P
P

Q Q Qo o o

 
( )( ) ( )( ) ( )( ){ }

1

02 2 2
, , , 0, ,

T T T Tmax max ep
π

ξ ϖ ξ ϖ ξ ϖ π π π
∞

∈

≤ Ψ+= =  
P

P
P

Q Q Qo o o
    (55)

among them, 
11

max ϖϖ
π π

∞ ≤ ≤
≤

P
.

In turn, ( )( ){ }2 , 0,
T Tmax e

π
ξ ϖ π π π

∞
= ≤ ΨQ o  

can be rewritten as

 

( )( )2 ,

. . 0
,

T

T

max

s t e
π

ξ ϖ π

π
π

π

=
≤ Ψ

≤ Ψ
−

Q o

    (56)

among them, eψΨ = .

According to the strong duality theory, we can get:

 

( )( )
. ,

2. . ,

0, 0

.

T Tm

e

in

s t
µ β γ

β γ

µ β γ ξ ϖ

β γ

Ψ +Ψ

− + =

≥ ≥

Q o

    (57)

Therefore, the pairwise form of the (53) is expressed 
as follows:

 

( )( )
( )( )

0

2

, 2.
,

. . ,

0, 0

.

T T Tm

s

pn

t e

i
µ β γ

ξ ϖ β γ

µ β γ ξ ϖ

β γ

Ψ

≥

+ +Ψ

− + =

≥





Q

Q

o

o

    (58)

In this way, the model (54) of the pairwise planning 
can be derived in the following form:

 

( )( )

' ' '

' '
0

, ,

' ' '

'

2

'

. .
, .

0
0, 0

T T Tm pin t

s t t
e t

e

t

µ β γ
β γ

µ β γ

ξ ϖ η

β γ

Ψ +Ψ

− + =

≤

≥

≥ ≥

+

−Q o

    (59)

In summary, the model (51) is given by

( ) ( )( )

( )( )

( )( )

2

' '

0 0
,

' ' '

'

2

2

'

,
1

,

,

0

1

. .

.

0

0, 0, , 0

T T T T T T

min

o

max

min t

t

t

t

o o

p p

s t e

e

e

o

       Constraints (3.5)- (3.6) 

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

( ) ( )( )

( )( )

( )( )

2

' '

0 0
,

' ' '

'

2

2

'

,
1

,

,

0

1

. .

.

0

0, 0, , 0

T T T T T T

min

o

max

min t

t

t

t

o o

p p

s t e

e

e

o

       Constraints (3.5)- (3.6) 

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

 

( ) ( )( )

( )( )

( )( )

2

' '

0 0
,

' ' '

'

2

2

'

,
1

,

,

0

1

. .

.

0

0, 0, , 0

T T T T T T

min

o

max

min t

t

t

t

o o

p p

s t e

e

e

o

       Constraints (3.5)- (3.6) 

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

+ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

− + + +

−

     







Q

Q

Q

o

o

o

    (60)

With the above proof, it is possible to obtain the 
model (51) computable reconstruction under the box 
ambiguous set.

Theorem 2.4. Under the polyhedral ambiguous set 
P2, the model  can be rewritten as follows:

( ) ( )( )

( )( )

( )( )

' ' '

' '

0 0 0 0
, , , , , , ,

1 1 1

' ' '

1 1

'

2

1

'

2

2

,
1

,

, ,

0

0, 0, 0,

. .

0

1

min

T T T T

o

T

ma

v v

T T

T T

x

T

min v t v

e v

t e v

t

t

p

o

s

o

p p p

t

e

o

                       Constraints 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +

+

− +
−

≤

+ ≤

≤

≥

≥ ≥ ≥ ≥

+ +

+

+

−

≤ ≤

     










P P P

P P P

Q

Q

Q

o

o

o

(3.5)- (3.6) 

( ) ( )( )

( )( )

( )( )

' ' '

' '

0 0 0 0
, , , , , , ,

1 1 1

' ' '

1 1

'

2

1

'

2

2

,
1

,

, ,

0

0, 0, 0,

. .

0

1

min

T T T T

o

T

ma

v v

T T

T T

x

T

min v t v

e v

t e v

t

t

p

o

s

o

p p p

t

e

o

                       Constraints 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +

+

− +
−

≤

+ ≤

≤

≥

≥ ≥ ≥ ≥

+ +

+

+

−

≤ ≤

     










P P P

P P P

Q

Q

Q

o

o

o

(3.5)- (3.6) 
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( ) ( )( )

( )( )

( )( )

' ' '

' '

0 0 0 0
, , , , , , ,

1 1 1

' ' '

1 1

'

2

1

'

2

2

,
1

,

, ,

0

0, 0, 0,

. .

0

1

min

T T T T

o

T

ma

v v

T T

T T

x

T

min v t v

e v

t e v

t

t

p

o

s

o

p p p

t

e

o

                       Constraints 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α

ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

+ + +

+

− +
−

≤

+ ≤

≤

≥

≥ ≥ ≥ ≥

+ +

+

+

−

≤ ≤

     










P P P

P P P

Q

Q

Q

o

o

o

(3.5)- (3.6)     (61)

where 2 2' ' ', , , , ,v v R R R R R Rθ ζ θ ζ ∈ × × × × ×P P  are 
the auxiliary variables.

Proof: Under the polyhedral ambiguous set, it can be 
deduced that

( )( )

( )( ) ( )( ){ }
( )( ) ( )( )( )

2

2

2 10 1 1 02

2 2

1

*

0

,

, , 0, 0, 1

, ,

,

T

T T T

T

max

max ep p

p

π

ξ ϖ

ξ ϖ ξ ϖ π π π π

ξ ϖ ξ ϖ

∈

= = ≥ ≤

=

+ +

Γ+



 

 

o

o o

o o

P
P

P P P

P
Q

Q Q

Q Q  
   (62)

where 
21

1
max
ϖ

ϖπ π
≤ ≤

≤
P  and ( )( )( )2

* ,ξ ϖΓ Q o  are the 
optimal values for the following convex problems:

( )( ){ }1 1 0 12 1
, 0, 0, 1 .

T Tmax pe
π

ξ ϖ π π π π+= ≥ ≤ P P PQ o
 

   (63)

The Lagrangian function of model (63) is described 
as follows:

( ) ( )( ) ( ) ( )2 1 0 1 1 1
, , , , 1 .

T T Tv p e vπ θ ζ ξ ϖ π θ π ζ π π= + + + −+ P P PL Q o  
   (64)

The Lagrangian pairwise function of model (63) is 
described as follows:

( ) ( )

( )( )( ){ }
( )( )( )

0 1 2 1 1 1

*
0 1 2 1 1

, , , , ,

, ,

,

T T T T

T T T T

g v max v

p v max e v

p v f e

π

π

θ ζ π θ ζ

θ ξ ϖ θ ζ π π

θ ξ ϖ θ ζ

=

= + + + + −

= + + + +





L

Q

Q

P P P

P P P

o

o  
   (65)

where

( )( )( ) ( )( )2

2

1 1 1*

1 1 1

0 ,
, .

T T T

T T T
v

f
e

e
otherwise

ξ ϖ θ ζ
ξ ϖ θ ζ ∞

+ + ≤
+ + =

∞








P P P
P P P

Q
Q

o
o

 
   (66)

Therefore, the dual of the (63) is the following 
problem:

( )( ){ }0 1 1 1, 2,
m .in , , 0, 0T T T T

v
p v o e v

θ ζ
θ ξ ω θ ζ θ ζ

∞
+ + + ≤ ≥ ≥P P PQ

 
   (67)

On this basis, the model (63) of the equivalence 
planning can be expressed as follows:

 

( )( )
( )( )

2 0. ,

1 2 1

0

1

min ,

. . , .

0, 0

T T

T T T

o v

s t o v

p p

e
µ β γ

ξ ω θ

ξ ω θ ζ

θ ζ
∞

+

+ +

+

≤

≥ ≥

P P P

Q

Q

 (68)

Similarly, the model (64) of the equivalent form can 
be rewritten as

 

( )( )

' ' '

' '
0 0, ,

' ' '
1 1

' '

2

1

min

, .

0
0, 0

. .

T T

v

T T T

p pt v

t e v

o

s t

t

e t

θ ζ
θ

θ ζ

ξ ω η

θ ζ

∞

+

+ ≤

≤

≥

−

+

≥

+

≥

P P P

Q

    (69)

In summary, the model (51) is equivalent to the 
following linear programming form

( ) ( )( )

( )( )

( )( )

' ' '

' '

2 0 0 0 0
, , , , , , ,

1 2 1 1

' ' '

1 1 1

2

' '

1 ,
1

. . ,

, .

0

0, 0, 0, 0

T T T T

o v v

T T T

T T T

min o p p v t p p v

s t o e v

t e v

o e t

t

                   Constraints (3.5) - (3.6) 

η θ ζ θ ζ

λ
λη λ ξ ω θ θ

α

ξ ω θ ζ

θ ζ

ξ ω η

θ ζ θ ζ

∞

∞

+ − + + + + +
−

+ + ≤

+ + ≤

− ≤

≥

≥ ≥ ≥ ≥

     Q

Q

Q

P P P

P P P

( ) ( )( )

( )( )

( )( )

' ' '

' '

2 0 0 0 0
, , , , , , ,

1 2 1 1

' ' '

1 1 1

2

' '

1 ,
1

. . ,

, .

0

0, 0, 0, 0

T T T T

o v v

T T T

T T T

min o p p v t p p v

s t o e v

t e v

o e t

t

                   Constraints (3.5) - (3.6) 

η θ ζ θ ζ

λ
λη λ ξ ω θ θ

α

ξ ω θ ζ

θ ζ

ξ ω η

θ ζ θ ζ

∞

∞

+ − + + + + +
−

+ + ≤

+ + ≤

− ≤

≥

≥ ≥ ≥ ≥

     Q

Q

Q

P P P

P P P

 

( ) ( )( )

( )( )

( )( )

' ' '

' '

2 0 0 0 0
, , , , , , ,

1 2 1 1

' ' '

1 1 1

2

' '

1 ,
1

. . ,

, .

0

0, 0, 0, 0

T T T T

o v v

T T T

T T T

min o p p v t p p v

s t o e v

t e v

o e t

t

                   Constraints (3.5) - (3.6) 

η θ ζ θ ζ

λ
λη λ ξ ω θ θ

α

ξ ω θ ζ

θ ζ

ξ ω η

θ ζ θ ζ

∞

∞

+ − + + + + +
−

+ + ≤

+ + ≤

− ≤

≥

≥ ≥ ≥ ≥

     Q

Q

Q

P P P

P P P

    (70)

With the above proof, it is possible to obtain  
the model (51) computably reconfigurable under  
the polyhedral ambiguous set.

Model Reconstruction Considering Risk 
Aversion No-Cost Threshold

Based on the Eq. (25), The objective function of the 
model (19) can be transformed into

( ) ( )( )[ ] ( )( )( )( )~ 3 ~ 3

1
1 , , .

1o R

min sup min
ξ ξ

η

λ ξ ϖ λ η ξ ϖ η
α+

+

∈∈

− + + −
−

  


 
P

Q Q
P P

P

E Eo o
 

   (71)

The order of the operators sup
∈P P  and R

min
η +∈  can be 

changed according to the strongly maximal-minimal 
nature of ( )( )3 ,ξ ϖQ o :
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( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

( ) ( )( )[ ] ( )( )( )

~ 3 ~ 3

~ 3 ~ 3

~ 3 ~ 3

1
1 , ,

1
1

1 , ,
1

1 max , max ,
1

.

R

R

R

sup min

min sup

min

ξ ξ
η

ξ ξ
η

ξ ξ
η

λ ξ ϖ λ η ξ ϖ η
α

λ ξ ϖ λ η ξ ϖ η
α

λ
λη λ ξ ϖ ξ ϖ η

α

+

+

+

+

∈∈

+

∈ ∈

+

∈ ∈∈

− + + −
−

= − + + −
−

= + − + −
−

     
     

  

 

 

 

P

P

P P

Q Q

Q Q

Q Q

P P
P

P P
P

P P
P P

E E

E E

E E

o o

o o

o o
 

   (72)

Therefore, the proposed TB-RDRO-DC model (19) 
can be equivalently expressed as

( ) ( )( )[ ] ( )( )( )~3 3~
,

1 , ,
1

,

. .
min max

o

o o o

min max max

s t

ξ ξ
η

λ
λη λ ξ ϖ ξ ϖ η

α
+

∈ ∈

≤ ≤

− ++ −
−

  



 
P P

P P
E E

P P
Q Qo o

 
   (73)

where ( )( )~ 3 ,max ξ ξ ϖ
∈

 
 PP

E
P

Q o  and 

( )( )( )~ 3 ,max ξ ξ ϖ η
+

∈

 
  

−PP
E

P
Q o  depend on the ambiguous 

set properties of the discrete probability distribution.
Theorem 2.5. Under the box ambiguous set P1, the 

model (73) can be rewritten as follows:

( ) ( )( )

( )( )

( )( )

' '

0 0
,

' ' '

3

3

'

3

'

,
1

,

, ,

0

0, 0, 0,

.

0

1

.

T T T T T T

min max

o
p p

s t e

e

e

o

       Constraints (3.8) - (3.9) 

min t

t

t

t
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η

λ
λη λ ξ ϖ β γ β γ

α
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ξ ϖ η

β γ β γ
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− + =
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≤

≥
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Q

Q

Q

o

o

o
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0 0
,
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3

3

'

3

'

,
1
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0
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0

1

.

T T T T T T

min max

o
p p

s t e

e

e

o

       Constraints (3.8) - (3.9) 

min t

t

t

t

o o

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

− + + ++ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥

≤ ≤

−

     









Q

Q

Q

o

o
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( ) ( )( )

( )( )

( )( )

' '

0 0
,

' ' '

3

3

'

3

'

,
1

,

, ,

0

0, 0, 0,

.

0

1

.

T T T T T T

min max

o
p p

s t e

e

e

o

       Constraints (3.8) - (3.9) 

min t

t

t

t

o o

η

λ
λη λ ξ ϖ β γ β γ

α
µ β γ ξ ϖ

µ β γ

ξ ϖ η

β γ β γ

− + + ++ Ψ + Ψ Ψ + Ψ
−

− + =

− + =

≤

≥

≥ ≥ ≥ ≥
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−

     









Q

Q

Q

o

o

o

    (74)

where 1 1 1 1' ' ', , , , , R R R R R Rµ β γ µ β γ ∈ × × × × ×P P P P
 

are the auxiliary variables.
Proof: The Eq. (24) can be deduced that

( )( ) ( )( )
1 1

~ 3 3, ,
T

max maxξ ξ ϖ ξ ϖ
∈ ∈

  =  PP P
E P.

P P
Q Qo o

   (75)

Therefore, the equivalent form of 
( )( )( )

1
3~ ,max ξ ξ ϖ η

+

∈

 
 

−


PP
E

P
Q o  can be expressed as

 

( )( )
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3 , .

0

. .

Tmax t

t

t

s t eξ ϖ η
∈

≤

≥

−

P
P

P

Q o

    (76)

Under the box ambiguous set, the model (75) and 
(76) are linear programming problems. In this case, the 
model (75) is given by the following equation:

( )( ) ( )( ) ( )( ){ }
1

03 3 3
, , , 0, ,T T T Tmax max ep

π

ξ ϖ ξ ϖ ξ ϖ π π π
∞

∈

≤ Ψ+= =  
P

P
P

Q Q Qo o o
 

   (77)

among them, 
11

max ϖ
ϖ

π π
∞

≤ ≤
≤

P .

In turn, ( )( ){ }3 , 0,T Tmax e
π

ξ ϖ π π π
∞

= ≤ ΨQ o  
can be rewritten as

 

( )( )3 ,

. . 0
,

T

T

max

s t e
π

ξ ϖ π

π
π

π

=
≤ Ψ

≤ Ψ
−

Q o

    (78)

among them, eψΨ = .
According to the strong duality theory, we can get:

 

( )( )
. ,
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Therefore, the pairwise form of the (75) is expressed 
as follows:
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In this way, the model (76) of the pairwise planning 
can be derived in the following form:
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In summary, the model (73) is equivalent to the 
following linear programming form
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With the above proof, it is possible to obtain the 
model (73) computable reconstruction under the box 
ambiguous set.

Theorem 2.6. Under the polyhedral ambiguous set  
P2, the model (73) can be rewritten as follows:
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where 
2 2' ' ', , , , ,v v R R R R R Rθ ζ θ ζ ∈ × × × × ×P P

 are 
the auxiliary variables.

Proof: Under the polyhedral ambiguous set, it can be 
deduced that
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where 21
1

max
ϖ

ϖπ π
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The Lagrangian function of model (85) is as follows:
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The Lagrangian pairwise function of model (85) is 
as follows:
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Therefore, the dual of the (85) is the following 
problem:
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On this basis, the model (75) of the equivalence 
planning can be expressed as follows:
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Similarly, the model (76) of the equivalent form can 
be rewritten as
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In summary, the model (73) is given by
 

( ) ( )( )

( )( )

( )( )

' ' '

' '
0 0 0 0

, , , , , , ,

1 1 1

' '

3

'
1 1

3

1

' '

3 ,
1

,

, .

0

0, 0, 0, 0

1

. .

T T T T

o v v

T T T

T T T

min v t v

e v

e

t e v

t

p p p p

s t

t

                   Constraints (3.8)- (3.9) 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α
ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

− + +

+

+

+

+

+ + +
−

+ ≤

≤

≤

≥

≥ ≥ ≥

−

≥

     







P P P

P P P

Q

Q

Q

o

o

o

( ) ( )( )

( )( )

( )( )

' ' '

' '
0 0 0 0

, , , , , , ,

1 1 1

' '

3

'
1 1

3

1

' '

3 ,
1

,

, .

0

0, 0, 0, 0

1

. .

T T T T

o v v

T T T

T T T

min v t v

e v

e

t e v

t

p p p p

s t

t

                   Constraints (3.8)- (3.9) 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α
ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

− + +

+

+

+

+

+ + +
−

+ ≤

≤

≤

≥

≥ ≥ ≥

−

≥

     







P P P

P P P

Q

Q

Q

o

o

o

 

( ) ( )( )

( )( )

( )( )

' ' '

' '
0 0 0 0

, , , , , , ,

1 1 1

' '

3

'
1 1

3

1

' '

3 ,
1

,

, .

0

0, 0, 0, 0

1

. .

T T T T

o v v

T T T

T T T

min v t v

e v

e

t e v

t

p p p p

s t

t

                   Constraints (3.8)- (3.9) 

η θ ζ θ ζ

λ
λη λ ξ ϖ θ θ

α
ξ ϖ θ ζ

θ ζ

ξ ϖ η

θ ζ θ ζ

∞

∞

− + +

+

+

+

+

+ + +
−

+ ≤

≤

≤

≥

≥ ≥ ≥

−

≥

     







P P P

P P P

Q

Q

Q

o

o

o

    (92)



Zhenhua Dai, et al.5078

With the above proof, it is possible to obtain the 
model (73) computably reconfigurable under the 
polyhedral ambiguous set.

Results and Discussion

Due to the large amount of carbon dioxide generated 
by burning fossil fuels such as oil and coal, these 
greenhouse gasses can strongly absorb infrared radiation 
from the ground, leading to an increase in Earth’s 
temperature. Global warming not only endangers the 
balance of natural ecosystems, but also affects human 
health and even threatens human survival. 

Carbon emissions trading is a market mechanism 
adopted to promote global greenhouse gas emissions 
reduction and reduce global carbon dioxide emissions. 
The United Nations Intergovernmental Panel on 
Climate Change passed the United Nations Framework 
Convention on Climate Change on May 9, 1992 through 
difficult negotiations. The first additional agreement to 
the Convention was passed in Kyoto, Japan in December 
1997. The Protocol regards market mechanisms as a new 
path to solve the problem of greenhouse gas emissions 
reduction represented by carbon dioxide, which regards 
carbon dioxide emission rights as a commodity, thus 
forming the trading of carbon dioxide emission rights, 
abbreviated as carbon trading. A complete carbon 
market has been established in China, and the key to it is 
how to allocate carbon emission quotas. Carbon quotas 
refer to the legal amount obtained by each enterprise 
through bargaining with the government over a certain 
period of time.

In this context, the negotiation of carbon quotas 
between enterprises and the government has actually 
formed a consensus process, and the numerical 
simulation cases in this article are all based on the above 
issues. Assuming that the government is negotiating 
carbon quotas with 20 companies, and the adjustment 
costs for each company in different directions are 
uncertain, we assume that each company has its own 
initial opinions (ideas) on carbon quotas. All numerical 
calculations were done with a laptop computer  
(Intel i7-7300HQ CPU, 32G RAM), using CPLEX 12.10 
to run the solution under JDK11.

Calculation Results

The following example explains the proposed 
distributionally robust cost consensus model considering 

risk factors. Suppose ( )0 0.3,0.6,0.1 T=P ,

( )0.02,0.04,0.06,0.08,0.1Ψ = , 

1 2I IΓ∗ = Ψ ∗=P P , where I is unit vector and

2 3=P , 0.5α = , and ( )0.1,0.3,0.5,0.7,0.9λ = .

Example 1. (Based on RDRO-DC)

The proposed model’s initial information data is 
given by Table 1.

The RDRO-DC model is solved using the CPLEX 
solver. According to the experimental results in Table 2, 
the RDRO-DC model’s consensus opinion is 6.13 and 
the minimum consensus cost is 381.12.

Example 2. (Based on ε-RDRO-DC)

The proposed model’s initial information data is 
given by Table 3.

The ε-RDRO-DC model is solved using the CPLEX 
solver. According to the experimental results in Table 4., 
the ε-RDRO-DC model’s consensus opinion is 5.87 and 
the minimum consensus cost is 375.6.

Example 3. (Based on TB-RDRO-DC)

The proposed model’s initial information data is 
given by Table 5.

The TB-RDRO-DC model is solved using the 
CPLEX solver. According to the experimental results in 
Table 6., the TB-RDRO-DC model’s consensus opinion 
is 6.06 and the minimum consensus cost is 378.5.

Table 1. RDRO-DC initial information data.

i  oi ci
D

 ci
U

1 4.2 15 23

2 6.7 10 26

3 6.2 11 22

4 5.3 12 24

5 6.1 13 25

6 5.5 11 31

7 3.8 16 21

8 4.9 12 23

9 4.6 15 24

10 5.0 16 25

11 5.7 12 31

12 6.3 11 26

13 4.9 14 32

14 5.3 13 23

15 2.8 21 39

16 3.2 18 30

17 4.5 14 24

18 6.8 11 25

19 7.1 9 18

20 3.6 19 30
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Comparison and Analysis of Results

Different combinations of Ψ and λ are used  
in the numerical case. As can be seen in Table 2.,  
Table 4., and Table 6., the optimal target value of 
the model increases as the parameter Ψ increases; 
because when the parameter Ψ is reduced, the accurate 
probabilistic information will be obtained and the 
model will be more accurate and more convenient to 
solve. It can also be observed that when the coefficient 
λ decreases, the optimal target value of the model 
decreases, as CVaR becomes a smaller proportion  
of the objective function, and there is no need to consider 
more risks to increase costs.

As can be seen from Table 7., the optimal target 
values of the models increase when the level of risk 
increases. This is because when the value of α tends  
to 1, CVaR will express highly risk-averse, and this  
high level of risk will lead to the overly conservative 
solution, which means the optimal target value increases. 
By observing the three uncertainty models proposed  
in this paper, it is observed that the optimal target  
value under the box ambiguous set is always smaller 
 than the optimal target value under the polyhedral 
ambiguous set. This is because the probability 
distribution of the polyhedral ambiguous set is more 
perturbed than that of the box ambiguous set. In other 
words, the box ambiguous set is simpler than the 
polyhedral ambiguous set, so its probability distribution 
information is more comprehensive than that of the 
polyhedral ambiguous set.

Table 3. ε-RDRO-DC initial information data.

Table 2. RDRO-DC Consensus Cost Results.

Ψ λ Box Ambiguous Set Polyhedral Ambiguous 
Set Ψ λ Box Ambiguous Set Polyhedral Ambiguous 

Set

0.02

0.1 349.6 381.2

0.04

0.1 367.5 416.2

0.3 362.8 403.6 0.3 384.1 433.9

0.5 374.8 427.4 0.5 398.7 457.6

0.7 391.2 459.0 0.7 418.3 480.2

0.9 417.3 492.7 0.9 437.7 501.3

0.06

0.1 377.8 431.7

0.08

0.1 403.8 462.4

0.3 401.1 454.0 0.3 427.6 483.1

0.5 423.6 472.8 0.5 459.3 506.3

0.7 447.2 498.3 0.7 481.2 534.2

0.9 472.8 524.7 0.9 506.9 557.9

0.1

0.1 415.2 486.2

0.3 437.9 504.9

0.5 461.7 526.7

0.7 482.5 551.8

0.9 513.6 578.3

i  oi ci
D

 ci
U εi

1 4.2 15 23 24

2 6.7 10 26 22

3 6.2 11 22 18

4 5.3 12 24 21

5 6.1 13 25 15

6 5.5 11 31 16

7 3.8 16 21 25

8 4.9 12 23 18

9 4.6 15 24 20

10 5.0 16 25 22

11 5.7 12 31 14

12 6.3 11 26 18

13 4.9 14 32 16

14 5.3 13 23 24

15 2.8 21 39 16

16 3.2 18 30 20

17 4.5 14 24 22

18 6.8 11 25 18

19 7.1 9 18 20

20 3.6 19 30 24
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Table 4. ε-RDRO-DC Consensus Cost Results.

Ψ λ Box Ambiguous Set Polyhedral Ambiguous 
Set Ψ λ Box Ambiguous Set Polyhedral Ambiguous 

Set

0.02

0.1 357.2 375.6

0.04

0.1 373.4 388.7

0.3 371.8 393.4 0.3 389.2 401.3

0.5 384.6 417.5 0.5 403.1 429.2

0.7 402.5 438.6 0.7 422.7 442

0.9 419.8 457.2 0.9 446.8 458.6

0.06

0.1 384.6 398.6

0.08

0.1 401.5 409.7

0.3 407 402.1 0.3 426.8 433.3

0.5 423.5 433.9 0.5 448.2 453.8

0.7 451.6 444.8 0.7 469.7 467.6

0.9 478.2 468.2 0.9 493.1 488.4

0.1

0.1 418.4 412.8

0.3 439.6 443.5

0.5 463.9 461.6

0.7 484.5 474.1

0.9 517.3 495.9

Table 5. TB-RDRO-DC initial information data.

i  oi ci
D

 ci
U θi

1 4.2 15 23 3

2 6.7 10 26 6

3 6.2 11 22 5

4 5.3 12 24 2

5 6.1 13 25 4

6 5.5 11 31 7

7 3.8 16 21 3

8 4.9 12 23 8

9 4.6 15 24 6

10 5.0 16 25 4

11 5.7 12 31 5

12 6.3 11 26 3

13 4.9 14 32 6

14 5.3 13 23 4

15 2.8 21 39 8

16 3.2 18 30 2

17 4.5 14 24 5

18 6.8 11 25 6

19 7.1 9 18 3

20 3.6 19 30 2

When Ψ = 0, the distributionally robust models will 
degenerate to a traditional stochastic programming 
model. The difference between the distributionally robust 
models and the traditional stochastic programming 
model will be discussed in the following paragraph. As 
can be seen from Table 8., under the same risk level, 
the optimal target values of the uncertainty models 
are greater than that of the certainty model, this shows 
that the uncertainty models are more conservative, this 
conservatism is caused by the robustness of the model. 
In the traditional stochastic programming model, the 
uncertainty of the data was not considered, although 
the uncertainty model increases the cost, the model 
can avoid the failure caused by the data uncertainty to 
a certain extent. Therefore, the distributionally robust 
models are important to the consensus reaching in 
MCCM.

Compared with the study of Ji et al. [37], According 
to the results shown in Table 9., it can be found that 
the distributionally robust models have a significant 
advantage over the stochastic programming model. 
Whether based on the box ambiguous set or higher cost 
polyhedral ambiguous sets, the total consensus cost to 
be paid is better than the stochastic programming model 
in most cases. Therefore, when faced with a consensus 
decision problem that considers the decision maker’s 
risk preferences, the model is able to obtain consensus 
opinions at a lower consensus cost.

Figs 1-3. show the comparison of consensus costs of 
the three models in this paper, the model in Ji et al. [37] 
and the no-risk model under different α. It can be seen 
that the addition of risk function will obviously increase 



Distributionally Robust Two-Stage... 5081

consensus model with risk aversion is more conservative 
than that without risk aversion, so the results are worse. 
However, a comparison with the results under existing 
stochastic programming-based methods with risk factors 
shows that the consensus cost of the model proposed in 
this paper would be better than the existing studies.

the consensus cost, which means that the model is risk 
sensitive. The total consensus cost of distributionally 
robust model with risk aversion is higher than that 
without risk aversion. In other words, it is more difficult 
to reach consensus when the risk is considered. 
Meanwhile, the two-stage stochastic minimum cost 

Table 6. TB-RDRO-DC Consensus Cost Results.

Table 7. Optimal results of the model with different α.

Ψ λ Box Ambiguous Set Polyhedral Ambiguous 
Set Ψ λ Box Ambiguous Set Polyhedral Ambiguous 

Set

0.02

0.1 358.9 378.5

0.04

0.1 371.6 401.9

0.3 367.2 391.6 0.3 382.8 438.3

0.5 381.4 413.4 0.5 397.6 462.8

0.7 393.5 436.8 0.7 416.7 473.5

0.9 411.6 453.2 0.9 432.5 496.1

0.06

0.1 382.4 413.8

0.08

0.1 397.6 418.5

0.3 406.1 442.7 0.3 416.7 432.7

0.5 421.3 468.9 0.5 438.5 458.2

0.7 443.5 491.3 0.7 467.3 481.6

0.9 467.3 503.4 0.9 491.7 504.3

0.1

0.1 427.8 422.6

0.3 451.1 439.8

0.5 480.2 467.2

0.7 493.5 483.9

0.9 509.3 507.5

α Uncertainty model Box Ambiguous Set Polyhedral Ambiguous Set Deterministic model Optimal results

0.1

RDRO-DC 217.8 236.7 TSMCCM-DC 184.6

ε-RDRO-DC 218.4 232.5 ε-TSMCCM-DC 189.3

TB-RDRO-DC 223.6 235.6 TB-TSMCCM-DC 181.5

0.3

RDRO-DC 249.8 268.3 TSMCCM-DC 184.6

ε-RDRO-DC 242.7 268.9 ε-TSMCCM-DC 189.3

TB-RDRO-DC 245.1 264.3 TB-TSMCCM-DC 181.5

0.5

RDRO-DC 282.6 309.4 TSMCCM-DC 184.6

ε-RDRO-DC 284.5 312.8 ε-TSMCCM-DC 189.3

TB-RDRO-DC 288.4 306.7 TB-TSMCCM-DC 181.5

0.7

RDRO-DC 327.1 344.8 TSMCCM-DC 184.6

ε-RDRO-DC 325.8 341.9 ε-TSMCCM-DC 189.3

TB-RDRO-DC 319.3 340.2 TB-TSMCCM-DC 181.5

0.9

RDRO-DC 349.6 381.2 TSMCCM-DC 184.6

ε-RDRO-DC 357.2 375.6 ε-TSMCCM-DC 189.3

TB-RDRO-DC 358.9 378.5 TB-TSMCCM-DC 181.5
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Table 8. Comparison of the results of different models.

α Uncertainty model Box Ambiguous Set Polyhedral Ambiguous Set Ψ = 0

0.1

RDRO-DC 217.8 236.7 196.2

ε-RDRO-DC 218.4 232.5 197.3

TB-RDRO-DC 223.6 235.6 203.5

0.3

RDRO-DC 249.8 268.3 217.8

ε-RDRO-DC 242.7 268.9 219.4

TB-RDRO-DC 245.1 264.3 221.3

0.5

RDRO-DC 282.6 309.4 257.9

ε-RDRO-DC 284.5 312.8 253.8

TB-RDRO-DC 288.4 306.7 258.6

0.7

RDRO-DC 327.1 344.8 278.1

ε-RDRO-DC 325.8 341.9 279.5

TB-RDRO-DC 319.3 340.2 283.4

0.9

RDRO-DC 349.6 381.2 301.2

ε-RDRO-DC 357.2 375.6 306.5

TB-RDRO-DC 358.9 378.5 307.5

Table 9. Comparison of the results of the Distributionally Robust and Stochastic Programming models.

α
Distributionally Robust 

Model Box Ambiguous Set Polyhedral Ambiguous 
Set

Stochastic Planning 
Model Optimal results

0.1

RDRO-DC 217.8 236.7 MRMCCM-DC 242.7

ε-RDRO-DC 218.4 232.5 ε-MRMCCM-DC 246.5

TB-RDRO-DC 223.6 235.6 TB-MRMCCM-DC 245.9

0.3

RDRO-DC 249.8 268.3 MRMCCM-DC 281.9

ε-RDRO-DC 242.7 268.9 ε-MRMCCM-DC 273.4

TB-RDRO-DC 245.1 264.3 TB-MRMCCM-DC 266.5

0.5

RDRO-DC 282.6 309.4 MRMCCM-DC 296.1

ε-RDRO-DC 284.5 312.8 ε-MRMCCM-DC 316.2

TB-RDRO-DC 288.4 306.7 εB-MRMCCM-DC 311.9

0.7

RDRO-DC 327.1 344.8 MRMCCM-DC 362.8

ε-RDRO-DC 325.8 341.9 ε-MRMCCM-DC 371.3

TB-RDRO-DC 319.3 340.2 TB-MRMCCM-DC 373.5

0.9

RDRO-DC 349.6 381.2 MRMCCM-DC 400.2

ε-RDRO-DC 357.2 375.6 ε-MRMCCM-DC 398.7

TB-RDRO-DC 358.9 378.5 TB-MRMCCM-DC 392.1
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Fig. 1. Comparison of the results of RDRO-DC, stochastic programming method and risk-free model.

Fig. 2. Comparison of the results of ε-RDRO-DC, stochastic programming approach and risk-free model.

Fig. 3. Comparison of the results of TB-RDRO-DC, stochastic programming method and risk-free model.
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Conclusions and Future Research

Against the backdrop of global warming and 
increasingly mature carbon emissions trading, the 
problem of distributional robust consensus decision-
making with decision maker risk preferences is 
considered. The three distributionally robust two-
stage minimum asymmetric cost consensus models 
with risk aversion based on carbon emission quotas 
are investigated, using a novel box ambiguous set and 
polyhedral ambiguous set. Through the transformation, 
the relevant formulas that are convenient for calculation 
are obtained. Finally, a number of meaningful 
conclusions can be obtained through numerical 
examples.

(1) Different values of Ψ, λ and α will lead to the 
changes in models’ optimal target values The parameter 
Ψ indicates the accurate probabilistic information, 
the optimal target value increases as the parameter Ψ 
increases. The parameter λ represents the proportion of 
the objective function, the λ decreases, the coefficient 
λ decreases, the optimal target value decreases.  
The parameter α shows the level of risk, the optimal 
target value increases when the value of α tends to 1, 
which means the model is highly risk-averse.

(2) The optimal target value under the box 
ambiguous set is always smaller than the optimal target 
value under the polyhedral ambiguous set. The main 
reason is: probability distribution information of the box 
ambiguous set is more comprehensive than that of the 
polyhedral ambiguous set.

(3) By comparing the distribution robust model with 
the stochastic programming model, the distribution 
robust model can use the distribution information in 
a more robust way than the stochastic programming 
model. Whether based on the box ambiguous set or 
polyhedral ambiguous set, the total consensus cost of 
the distribution robust model to be paid is better than the 
stochastic programming method in most cases.

(4) The consensus model is sensitive to the risk 
factor. The total consensus cost of distributionally robust 
model with risk aversion is higher than that without risk 
aversion, and it is more difficult to reach consensus 
when the risk is considered.

In short, it will make the model better avoid 
uncertainty and risk that introducing distributionally 
robust method and CVaR into consensus problem. The 
consensus cost of the models in this paper outperforms 
the corresponding results under stochastic programming 
methods and brings new solutions to decision problems 
in the allocation of carbon emission quotas.

One limitation inherent in this study pertains to its 
exclusive focus on small-scale group consensus models, 
involving fewer than 20 decision-makers. In reality, 
however, large-scale group decision-making scenarios 
involve the participation of more than 20 individuals, 
and these have not been comprehensively explored. As 
a prospective avenue for further research, we intend to 
delve into the realm of large-scale group decision-making 

problems in subsequent studies. This will involve 
leveraging social network methodologies and other 
innovative approaches to extend the applicability of 
the findings from this study to larger decision-making 
groups. 

Additionally, another limitation stems from the 
exclusive consideration of box and polyhedral ambiguity 
sets. In future research endeavors, we aim to broaden 
our exploration by incorporating multiple types of 
ambiguity sets, such as ellipsoid or a combination of 
box and polyhedral ambiguity sets. This approach will 
enable us to investigate and understand better the impact 
of different ambiguity set structures on managing 
uncertainty.

Acknowledgments

We thank for the consideration of the editor and the 
insightful comments of reviewers.

Conflict of Interest 

The authors declare that they have no known 
competing financial interests or personal relationships 
that could have appeared to influence the work reported 
in this paper.

References

1. CHEN Y., MA L., LIU T., HUANG X., SUN G. 
Spatio-Temporal Variation Characteristics of Summer 
Precipitation in China and Its Response to ENSO. Polish 
Journal of Environmental Studies, 32 (6), 4981, 2023.

2. WU J., CHICLANA F., FUJITA H., HERRERA-VIEDMA 
E. A visual interaction consensus model for social network 
group decision making with trust propagation. Knowledge-
Based Systems, 122 (APR.15), 39, 2017.

3. WU Z., HUANG S., XU J. Multi-stage optimization 
models for individual consistency and group consensus 
with preference relations. European Journal of Operational 
Research, 275, 2018.

4. LABELLA A., LIU A., RODRIGUEZ R.M., MARTINEZ 
L. A cost consensus metric for consensus reaching 
processes based on a comprehensive minimum cost model. 
European Journal of Operational Research, 281 (2), 316, 
2020.

5. GONG Z., ZHANG N., CHICLANA F. The optimization 
ordering model for intuitionistic fuzzy preference relations 
with utility functions. Knowledge-Based Systems, 162 
(DEC.15), 174, 2018.

6. TONG W., LIU X., QIN J. A linguistic solution for double 
large-scale group decision-making in E-commerce. 
Computers Industrial Engineering, 116 (FEB.), 97, 2017.

7. DONG Y., LUO N., LIANG H. Consensus building in 
multiperson decision making with heterogeneous preference 
representation structures: A perspective based on prospect 
theory. Applied Soft Computing, 35, 898, 2015.

8. DONG Y., HERRERA-VIEDMA E. Consistency-Driven 
Automatic Methodology to Set Interval Numerical 



Distributionally Robust Two-Stage... 5085

Scales of 2-Tuple Linguistic Term Sets and Its Use in 
the Linguistic GDM With Preference Relation. IEEE 
Transactions on Cybernetics, 45 (4), 780, 2017.

9. QU S., SHUAI L. A Supply Chain Finance Game Model 
with Order-to-Factoring Under Blockchain. Systems 
Engineering-Theory & Practice, 41 (12), 2023.

10. D B.-A., T E. Multi-criteria group consensus under linear 
cost opinion elasticity. Decision Support Systems, 43, (3), 
713, 2007.

11. BEN-ARIEH D., EASTON T. Minimum cost consensus 
with quadratic cost functions. IEEE Transactions on 
Systems, Man, and Cybernetics-Part A: Systems and 
Humans, 39 (1), 210, 2008.

12. GONG Z.W., ZHANG H.H., FORREST J., LI L.S., XU 
X.X. Two consensus models based on the minimum cost 
and maximum return regarding either all individuals or 
one individual. European Journal of Operational Research, 
240 (1), 183, 2015.

13. JI Y., MA Y. The robust maximum expert consensus model 
with risk aversion. Information Fusion, 99, 101866, 2023.

14. DONG Y., XU Y., LI H., FENG B. The OWA-based 
consensus operator under linguistic representation models 
using position indexes. European Journal of Operational 
Research, 203 (2), 455, 2010.

15. ZHANG G., DONG Y., XU Y., LI H. Minimum-Cost 
Consensus Models Under Aggregation Operators. IEEE 
Transactions on Systems, Man, and Cybernetics - Part A: 
Systems and Humans, 41 (6), 1253, 2011.

16. CHENG D., ZHOU Z., CHENG F., ZHOU Y., XIE Y. 
Modeling the minimum cost consensus problem in an 
asymmetric costs context. European Journal of Operational 
Research, 270 (3), 1122, 2018.

17. LI H., JI Y., GONG Z., QU S. Two-stage stochastic 
minimum cost consensus models with asymmetric 
adjustment costs. Information Fusion, 71, 77, 2021.

18. HAN Y., QU S., WU Z. Distributionally Robust Chance 
Constrained Optimization Model for the Minimum Cost 
Consensus. International Journal of Fuzzy Systems, 22 (6), 
2041, 2020.

19. ZHANG H., JI Y., QU S., LI H., HUANG R. The robust 
minimum cost consensus model with risk aversion. 
Information Sciences, 587, 283, 2022.

20. LI H., JI Y., QU S. Two-stage stochastic integrated 
adjustment deviations and consensus models in an 
asymmetric costs context. Journal of Intelligent & Fuzzy 
Systems, 40 (6), 12301, 2021.

21. MA G., ZHENG J., WEI J., WANG S., HAN Y. Robust 
optimization strategies for seller based on uncertainty sets 
in context of sequential auction. Applied Mathematics and 
Computation, 390, 125650, 2021.

22. GONG Z., XU X., GUO W., HERRERA-VIEDMA E., 
CABRERIZO F.J. Minimum cost consensus modelling 
under various linear uncertain-constrained scenarios. 
Information Fusion, 66, 1, 2021.

23. JI Y., JIN X., XU Z., QU S. A mixed 0-1 programming 
approach for multiple attribute strategic weight 

manipulation based on uncertainty theory. Journal of 
Intelligent & Fuzzy Systems, 41 (6), 6739, 2021.

24. LIU Y., ZHOU T., FORREST J. A Multivariate Minimum 
Cost Consensus Model for Negotiations of Holdout 
Demolition. Group Decision and Negotiation, 29 (5), 871, 
2020.

25. HAN Y., QU S., WU Z., HUANG R. Robust consensus 
models based on minimum cost with an application to 
marketing plan. Journal of Intelligent & Fuzzy Systems, 
37 (4), 5655, 2019.

26. WEI J., QU S., JIANG S., FENG C., XU Y., ZHAO X. 
Robust minimum cost consensus models with aggregation 
operators under individual opinion uncertainty. Journal of 
Intelligent & Fuzzy Systems, 42 (3), 2435, 2022.

27. JIN X., JI Y., QU S. Minimum cost strategic weight 
assignment for multiple attribute decision-making problem 
using robust optimization approach. Computational and 
Applied Mathematics, 40 (6), 2021.

28. HUANG R., QU S., YANG X., LIU Z. Multi-stage 
distributionally robust optimization with risk aversion. 
Journal of Industrial & Management Optimization, 17 (1), 
233, 2021.

29. HUANG R., QU S., GONG Z., GOH M., JI Y. Data-driven 
two-stage distributionally robust optimization with risk 
aversion. Applied Soft Computing, 87, 105978, 2020.

30. QU S., MENG D., ZHOU Y., DAI Y., GUIRAO J.L.G., 
GAO W. Distributionally robust games with an application 
to supply chain. Journal of Intelligent & Fuzzy Systems, 
33 (5), 2749, 2017.

31. DING K., WANG M.-H., HUANG N. Distributionally 
robust chance constrained problem under interval 
distribution information. Optimization Letters, 12 (6), 
1315, 2018.

32. WIPPLINGER E. Philippe Jorion: Value at Risk – The 
New Benchmark for Managing Financial Risk. Financial 
Markets and Portfolio Management, 21 (3), 397, 2007.

33. ARTZNER P., DELBAEN F., EBER J.M., HEATH 
D.J.M.F. Coherent measures of risk. Mathematical 
Finance, 9 (3), 203, 1999.

34. ROCKAFELLAR R.T., URYASEV S. Optimization of 
conditional value-at-risk. Journal of risk, 2, 21, 2000.

35. ROCKAFELLAR R.T., URYASEV S. Conditional value-
at-risk for general loss distributions. Journal of banking 
finance, 26 (7), 1443, 2002.

36. WANG W., YANG K., YANG L., GAO Z. Two-stage 
distributionally robust programming based on worst-case 
mean-CVaR criterion and application to disaster relief 
management. Transportation Research Part E: Logistics 
and Transportation Review, 149, 102332, 2021.

37. JI Y., LI H., ZHANG H. Risk-Averse Two-Stage Stochastic 
Minimum Cost Consensus Models with Asymmetric 
Adjustment Cost. Group Decision and Negotiation, 31 (2), 
261, 2022.




