
Pol. J. Environ. Stud. Vol. 33, No. 4 (2024), 4791-4806
DOI: 10.15244/pjoes/177464 ONLINE PUBLICATION DATE: 2024-05-20

*e-mail: yangs996@foxmail.com

              Original Research

Agricultural Carbon Emissions in China: 
Estimation, Influencing Factors,  

and Projection of Peak Emissions

Hui Wu1, Yang Yue2, Yang Shen3*

1Department of Management Science and Engineering and the Data Science and Systems Science (DTripleS) Lab,  
Nanjing Forestry University, Nanjing, Jiangsu, 21003, China

2School of Economics, South-Central Minzu University, Wuhan, Hubei, 430742, China;
3School of Statistics, Huaqiao University, Xiamen, Fujian, 361021, China

Received: 15 November 2023
Accepted: 21 December 2023

Abstract

Agricultural carbon emissions significantly contribute to global greenhouse gases. Enhancing 
green and low-carbon agricultural practices is crucial for China’s high-quality economic progression  
and achieving its “carbon peaking and carbon neutrality” objectives. This study focuses on agriculture’s 
ecological role, incorporating 18 primary carbon sources across agricultural materials, soil, water 
fields, and animal husbandry into an evaluative framework. It assesses the total agricultural carbon 
emissions in 31 Chinese provinces from 2000 to 2021. Employing the STIRPAT environmental pressure 
model, the paper investigates the determinants of China’s agricultural carbon emissions. Additionally, 
it utilizes the BP neural network model for forecasting emission peak trends under various development 
scenarios and validates these predictions through the Geographically and Temporally Weighted 
Regression (GTWR) model, among other methods. The findings reveal a reverse U-shaped pattern  
in China’s total agricultural carbon emissions over the study period, marked by initial growth followed 
by a decline and significant regional variations. The primary drivers of these emissions are the 
agricultural population, per capita agricultural GDP, and agricultural technology level. Under green 
development initiatives, China’s agricultural sector is projected to achieve its “peak CO2 emission” 
goal by around 2030, with minimal peak variations. This research offers valuable insights into Chinese 
agriculture’s carbon sequestration capabilities within the context of carbon peak and neutrality goals. 
It guides governmental agencies in devising flexible, precise, and moderate agricultural carbon sink 
strategies, enhancing regional agricultural collaborations, and promoting pollution and carbon reduction 
in China’s agriculture towards realizing its “carbon peaking and carbon neutrality” ambition.

Keywords: peak carbon dioxide emissions, agricultural carbon emissions, STIRPAT model, BP neural 
network
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Introduction

As modernization intensifies and human society 
rapidly evolves, the issue of climate change, primarily 
driven by escalating carbon dioxide emissions, has 
emerged as a significant global challenge. The urgency 
of reducing carbon emissions gains prominence amidst 
the ongoing global warming crisis. Agriculture,  
a key economic sector, is recognized as a substantial 
contributor to carbon emissions. Data from the United 
Nations Food and Agriculture Organization (FAO) 
indicate that emissions from agricultural activities and 
land-use changes constitute approximately one-fourth 
of total human-induced carbon emissions [1]. The 
Intergovernmental Panel on Climate Change’s (IPCC) 
Fourth Assessment Report underscores that agriculture 
accounts for nearly one-third of global greenhouse 
gas emissions, making it the second-largest source [2, 
3]. In response, nations worldwide have established 
targets for climate change mitigation and adaptation. 
Demonstrating its commitment to environmental 
stewardship, China, at the 2021 15th Conference of the 
Parties to the Convention on Biological Diversity (CBD), 
advanced the integration of “carbon peaking and carbon 
neutrality” into its ecological civilization blueprint, with 
an aim to peak carbon emissions by 2030 and achieve 
carbon neutrality by 2060. As the leading emitter of 
greenhouse gases globally, China attributes 17% of 
its carbon emissions to agriculture, which, in 2017, 
constituted 29.01% of Asia’s and approximately 12.54% 
of the world’s agricultural emissions [4]. In facing the 
formidable task of realizing its “dual-carbon” objectives, 
China urgently seeks a transition to a green, low-carbon, 
and sustainable development pathway, identifying the 
reduction of agricultural carbon emissions as a critical 
strategy.

The examination of agricultural carbon emissions 
is pivotal to addressing global climate change and 
understanding the carbon cycle. Agriculture not only 
represents a significant source of worldwide greenhouse 
gas emissions but is also a crucial component of the 
carbon cycle. Thorough research into agricultural 
carbon emissions is essential for devising effective 
strategies to reduce emissions and optimize agricultural 
practices, contributing to the mitigation of global 
warming. Furthermore, such research is key to meeting 
international environmental commitments and fostering 
sustainable agricultural development. Realizing the 
‘dual-carbon’ objective necessitates comprehensive 
studies of carbon emissions across various sectors. 
While agricultural carbon emissions have garnered 
less focus compared to those from the industrial and 
service sectors, their impact on the overall carbon 
cycle is considerable. Traditional methods of measuring 
carbon emissions, which often concentrate on energy 
consumption, tend to overlook the distinctive emission 
characteristics inherent in agricultural processes 
like cultivation and livestock rearing. For instance, 
the emission dynamics in rice farming and animal 

husbandry, which release substantial greenhouse gases, 
differ markedly from those in industrial and service 
activities. Consequently, applying carbon emission 
reduction models from the industrial and service 
sectors directly to agriculture is ineffective. This paper, 
therefore, undertakes an analysis of agricultural carbon 
emissions across 31 provinces in China. It aims to 
comprehensively assess the current state and unique 
features of China’s agricultural emissions, examine their 
spatial and temporal dynamics, identify influencing 
factors, and provide practical, well-grounded 
recommendations. This analysis will offer theoretical 
insights for reducing agricultural carbon emissions, 
aiding in the reduction of China’s agricultural emissions, 
and helping meet its international carbon emission 
reduction commitments.

Literature Review

Agricultural carbon emissions encompass both direct 
and indirect greenhouse gas emissions that arise from 
the use of fertilizers, pesticides, fossil fuels, and waste 
management in agricultural production. Agriculture 
uniquely functions as both a carbon source and a carbon 
sink. As a carbon source, it generates greenhouse gas 
emissions through activities like crop cultivation, 
livestock farming, aquaculture, and forestry. As a 
carbon sink, it sequesters carbon via photosynthesis in 
ecosystems such as fields, forests, and grasslands. This 
dual role bestows on agriculture a distinct position in 
the context of carbon emissions, setting it apart from 
other industries. Consequently, accurately measuring 
agricultural carbon emissions requires a comprehensive 
approach, considering various factors such as the use of 
agricultural inputs, land management, rice cultivation, 
and animal husbandry, rather than solely focusing on the 
net carbon emissions from crops [5]. Current scholarly 
research predominantly explores the quantification, 
temporal dynamics, determinants, and predictive 
analyses of agricultural carbon emissions.

The primary methodologies for measuring 
agricultural carbon emissions include the IPCC inventory 
method, the life cycle assessment (LCA) method, 
and the input-output analysis method. The IPCC’s 
Guidelines for National Greenhouse Gas Inventories are 
the most extensively adopted for national GHG emission 
inventories, encompassing emission sources and factors. 
Anwar et al. utilized the IPCC method for analyzing 
GHG emissions in sectors like agriculture and forestry 
[6]. The LCA method evaluates carbon intensity and 
emission factors, with Li et al. demonstrating fluctuating 
carbon emissions trends in China’s dairy industry [7]. 
The input-output approach, focusing on energy demand 
and emission factors, was employed by Yuan et al. to 
assess the carbon emission dynamics in various Chinese 
industries [8]. Additionally, models such as Agri-LCI, 
SPAC, and DNDC have been instrumental in estimating 
carbon emissions across diverse regions and sectors [9]. 
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Goglio et al. conducted a comparative analysis of the 
IPCC method and DNDC model, leveraging field trial 
data [10].

The analysis of the spatial and temporal evolution 
of agricultural carbon emissions frequently employs the 
kernel density method and the Malmquist index method 
[11]. Ma et al. examined the spatio-temporal dynamics 
of agricultural carbon emission efficiency using the 
DEA-Malmquist index decomposition approach 
[12]. They dissected the Agricultural Mechanization 
Carbon Productivity Index (AMCPI) into the technical 
efficiency index and the technical progress index, 
integrating agricultural carbon emissions into the 
agricultural economic accounting system. This method 
was used to assess the trends in agricultural carbon 
emission efficiency across 31 Chinese provinces, 
cities, and districts from 2000 to 2011. To align with 
China’s objective of achieving “carbon peak and 
carbon neutrality,” Wang et al. selected Guangdong 
Province, China’s most industrially advanced region, 
and employed a kernel density estimation model. This 
model was used to analyze the composition of industrial 
fossil energy consumption and the total carbon dioxide 
emissions from industrial enterprises [13]. In addition, 
the Malmquist index has been widely used to measure 
the efficiency of agricultural carbon emissions [14].

The decomposition of factors influencing agricultural 
carbon emissions primarily involves models such as 
the LMDI index decomposition model, Kaya identity, 
STIRPAT model, Divisia index decomposition method, 
and the Input-Output Structural Decomposition Analysis 
(I-O SDA) [15-18]. Furthermore, research indicates 
that agricultural carbon emissions are impacted by 
factors at both the market and governmental levels [19]. 
Additionally, at the micro level, variables including 
population, industrial structure, economic development 
level, educational attainment, mechanization degree, 
agricultural advancement, and urbanization extent also 
play significant roles in determining agricultural carbon 
emissions [20-23].

The projection of future trends and peak times for 
carbon emissions is a topic extensively explored by 
scholars. Common methodologies for these predictions 
encompass the gray prediction model, the input-
output model, the STIRPAT model, and the Long-
Range Energy Alternatives Planning (LEAP) model. 
Zhang employed the gray prediction model GM (1, 1) 
to forecast agricultural carbon emissions in Shandong 
Province from 2021 to 2045, deducing that emissions 
would peak by 2030 [24]. Chang conducted a projection 
for Henan Province’s agricultural carbon emissions 
between 2021-2030, indicating a potential achievement 
of carbon neutrality by 2029 [25]. The LEAP model, 
recognized as a comprehensive energy-economic-
environmental assessment tool, is utilized for projecting 
energy demands and carbon emissions. Hong applied 
the LEAP model to simulate China’s carbon peaking 
trajectory [26]. Additionally, other scholars have adopted 
the logistic growth model, the BP neural network 

model, and the LSTM model for carbon peak modeling  
[27-29]. Scenario prediction models [30] have also 
gained increasing prominence in the field of carbon 
emission forecasting.

In conclusion, the research into agricultural carbon 
emissions appears to be systematic and comprehensive, 
yielding significant findings in various dimensions. 
Nonetheless, as research progresses, certain limitations 
in existing studies persist. To address these, this 
study employs the established IPCC guidelines and 
the STIRPAT model to guarantee accuracy and 
comparability. Innovatively, it also utilizes the BP 
neural network model and the Geographically and 
Temporally Weighted Regression (GTWR) model for 
enhanced prediction and robustness assessment. These 
methodologies augment the precision and dependability 
of forecasts, contributing to a more profound 
understanding of the current state and future trajectory 
of agricultural carbon emissions.

This study’s key contributions are manifold. Firstly, 
it addresses the regional disparities in agricultural 
carbon emissions within China’s varied topographical 
landscape. It delves into the differences in resource 
availability and agricultural production patterns across 
regions, thereby offering a nuanced understanding of 
the regional emission variances. Secondly, it expands 
the analytical framework to include a broader range of 
carbon source indicators, enabling a more systematic 
and holistic evaluation of China’s agricultural carbon 
emissions. Thirdly, it investigates the socio-economic 
factors influencing the trends in agricultural carbon 
emissions, incorporating the STIRPAT environmental 
stress model to unravel the intricate interplay between 
regional development imbalances and carbon emissions. 
This approach allows for a multifaceted exploration of 
the determinants of agricultural carbon emissions in 
China. Fourthly, by employing BP neural networks 
for forecasting, the study not only assesses China’s 
agricultural carbon emissions but also anticipates their 
peak and suggests context-specific carbon reduction 
measures. Overall, this research fills existing gaps in 
the literature by providing a thorough, comprehensive, 
and integrated socio-economic analysis of China’s 
agricultural carbon emissions. This contributes 
significantly to the formulation of effective carbon 
reduction strategies and the achievement of carbon 
emission peak goals.

Methods and Data Sources

Research Methods

Measurement of Agricultural Carbon Emissions

This study employs the IPCC’s (2006) guidelines 
and pertinent literature to quantify China’s agricultural 
carbon emissions from four perspectives. The first 
involves agricultural inputs such as fertilizers, 
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pesticides, agricultural films, machinery, and diesel 
fuel, recognized as significant carbon sources [31]. The 
second perspective focuses on land use, specifically the 
carbon emissions resulting from plowing activities, with 
metrics including the total sown area of crops and the 
irrigated area [32]. Thirdly, the study assesses methane 
emissions from rice fields, accounting for hydrothermal 
conditions in various regions. The chosen indicators for 
this assessment are the cultivation of early, middle, and 
late rice [33]. Lastly, the livestock sector is evaluated, 
considering the enteric fermentation and fecal emissions 
from animals including cattle (both beef and dairy), 
horses, donkeys, mules, pigs, and sheep (encompassing 
goats and sheep). Integrating these factors, the study 
formulates the following agricultural carbon emission 
measurement model:

 iii ecc ε×∑=∑=  (1)

In Equation (1), c is the total amount of agricultural 
carbon emissions; ci is the carbon emissions from source 
i; ei is the total amount of inputs from source i; and εi 
is the carbon emission coefficient of source i. For the 
convenience of accounting, the estimated GHGs are 
converted to CO2 uniformly, and according to the IPCC 
Fifth Assessment Report, 1tC, CH4, and N2O can be 
converted to 44/12, 28, and 265 t CO2, respectively.

Kernel Density Estimation

Kernel density estimation, a crucial nonparametric 
technique, has gained prominence in analyzing uneven 
distributions[34]. This method primarily estimates the 
probability density of a random variable, representing 
the variable’s distribution pattern through a continuous 
density curve. Employing kernel density analysis 
aids in elucidating the dynamic evolution of China’s 
agricultural carbon emissions, thereby supporting the 
development of tailored emission reduction strategies. 
The functional form of this method is presented below:

  (2)

In Equation (2), f(x) is the density function;  

is the kernel function, h is the bandwidth, and n is the 
number of observations (i.e., the total number of 
provinces), i denotes individual provinces, xi denotes 
independently and identically distributed observations, 
and x̅ is the mean.Regarding the selection of kernel 
density functions, commonly utilized options include 
the Gaussian kernel, the Epanechnikov kernel, the 
biweight kernel, and the triangular kernel. Generally, the 
choice of different kernel density functions has  
a minimal impact on estimation outcomes. Therefore, 
this study opts for the widely used Gaussian kernel 
function as the basis for discussion. In terms of selecting 
the window width, the study employs an optimal 

window width selection method to determine this 
parameter [35].

Spatial Measurement Analysis

Global Spatial Autocorrelation

To more effectively represent the spatial 
autocorrelation of agricultural carbon emissions and 
their influencing factors, this study utilizes Global 
Moran’s I for measurement [36]. The calculation formula 
employed is as follows:
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In Equation (3) , , 

and Xi are the observed values of region i, and n is the 
total number of regions.The global Moran index, denoted 
as I, typically ranges between [-1,1]. A value of I>0 
signifies positive autocorrelation, suggesting that 
agricultural carbon emission values in provinces and 
their neighbors are spatially clustered, either as high-
value or low-value agglomerations. Conversely, I<0 
indicates negative autocorrelation, where the spatial 
distribution of agricultural carbon emissions in adjacent 
provinces is more dispersed. A value of I = 0 reflects no 
correlation. The spatial weights matrix, wij, is essential 
in this analysis, and this paper employs the Composite 
Spatial Weights Matrix. The global Moran index’s 
calculation undergoes a Z-value significance test, as 
depicted in Equation (4):

  (4)

Modeling of Factors Influencing Carbon 
Emissions in STIRPAT Agriculture

In this study, the STIRPAT model is employed 
to analyze the influence of China’s rural population, 
affluence, and technological advancements on the 
carbon emissions from its agricultural sector [37].  
The model is structured as follows:

 
b c dI aP A T e=  (5)

Where I, P, A, and T represent environmental 
impact, population, affluence, and technology level, 
respectively; a is a constant term; b, c, and d are indices 
to be estimated; and e is the error term. The model  
is a multivariate nonlinear model, after taking the 
logarithm of both sides of the model, we can get:
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fertilizers (pure amounts), pesticides, agricultural films, 
and agricultural diesel are the actual amounts used in 
that year, and plowing is replaced by the actual sown 
area of crops in that year. For the amount of livestock 
and poultry breeding, it is calculated according to the 
median value of 130 days that the number of pigs, cattle, 
goats, sheep, etc. is based on the number of stocks at the 
end of the year, and the total value of agricultural output 
is discounted based on the year 2000 as the base period. 
For individual missing data, moving averages, mean 
interpolation, and linear interpolation were used to fill 
in the gaps. Hong Kong, Macao, and Taiwan were not 
included in the study due to data availability constraints.

Characterization of the Current Status

Characterization of the Time-Series  
of Agricultural Carbon Emissions

Table 1 illustrates that between 2000 and 2021, 
China’s total agricultural carbon emissions escalated 
from 102.668 million tons to 118.6 million tons, marking 
an increase of 0.16%. In 2021, the distribution of carbon 
sources was as follows: agricultural materials accounted 
for 63.39%, land use for 19.99%, paddy fields for 5.6%, 
and animal husbandry for 10.99%. Notably, while land 
use carbon emissions exhibited an upward trend, the 
emissions from other sources declined. Regarding 
the year-over-year growth rate, the overall trend for 
ttotal agricultural carbon emissions were decreasing.  
A notable exception occurred in 2007, attributed 
primarily to the reduction in large-scale livestock 
breeding and the gradual refinement of industrial 
structures within the livestock sector.

Carbon emissions from China’s agricultural sector 
can be categorized into four distinct stages: a period 
of rapid growth from 2000-2006, steady growth from 
2007-2010, slowing growth from 2011-2015, and  
a decline from 2016-2021.

In the initial rapid growth phase, the peak annual 
growth rate of total carbon emissions reached 5.11% 
in 2004. This surge was primarily due to the issuance 
of the Central Government’s Document No. 1 in 2004, 
which implemented the “two reductions, three subsidies” 
policy. This policy invigorated farmers’ production 
enthusiasm, leading to increased agricultural input 
usage and consequently accelerating carbon emissions in 
agriculture.

The second phase, characterized by steady growth, 
saw a slight reduction in total carbon emissions in 
2007 compared to 2006, yet the overall upward trend 
persisted. This period was more stable than the first. 
The downturn in 2007 coincided with the 17th National 
Congress of the Communist Party of China’s emphasis 
on resource conservation and ecological protection, 
contributing to the temporary decline.

In the third stage, the growth rate of emissions 
slowed significantly. Although total agricultural carbon 

 ln ln + ln + ln + lnT+lnI a b P c A d e=  (6)

A multivariate linear regression analysis was 
conducted on the refined model, with the natural 
logarithm of I (lnI) as the dependent variable and the 
natural logarithms of P(lnP), A(lnA), and T(lnT) as 
independent variables. The model includes a constant 
term (lna) and an error term (lne). In this model: 
Irepresents the total carbon emissions from Chinese 
agriculture (in tons); P denotes the agricultural 
population (in 10,000 individuals); A signifies the 
degree of affluence, measured by per capita agricultural 
GDP (in yuan per person); and T indicates the level 
of agricultural technology, reflected by the power of 
agricultural machinery. 

Agricultural Carbon Emission 
Trend Projection Model

The BP (back propagation) neural network model, 
inspired by the principles of the biological neuron 
system, comprises three components: an input layer, 
a hidden layer, and an output layer[38]. This model is 
distinguished by its minimal error margin and high 
accuracy. In this study, the number of neurons in 
the hidden layer of the BP neural network model is 
determined using the following empirical formula:

 
1/2( )l n m h= + +  (7)

In Equation (7), n and m are the number of nodes in 
the input and output layers, respectively; h is a constant 
with a value in the range of [1, 10]. The parameters are 
iterated continuously through training, and finally the 
network converges to complete the training.

Study Area and Data Sources

LLocated in the eastern part of Asia, China is 
one of the largest countries in the world, with the 
largest population in the world. China’s agricultural 
production is mainly concentrated in its vast rural 
areas, which include a number of provinces such as 
Henan, Shandong, Hebei, etc. In 2021, China’s realized 
gross output value of agriculture, forestry, animal 
husbandry, and fishery reached 14,701.34 billion yuan, 
with a year-on-year growth rate of 6.7%. In terms of 
ecological functions, China is recognized as a country 
that responds and acts positively in global assessment 
studies of the development process of a low-carbon 
economy. As a major economic power in the world, 
China’s contribution to the promotion of a low-carbon 
economy and sustainable development is obvious [39].

The basic data in this paper comes from the China 
Statistical Yearbook, the China Energy Statistical 
Yearbook, the China Rural Statistical Yearbook, and so 
on. The sample covers 31 provinces and cities, and the 
examination period is from 2000 to 2021. Among them, 
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emissions continued to rise, the annual increase 
ranged between 0.683%-1.994%, indicating a marked 
deceleration. This stage aligned with China’s 12th Five-
Year Plan, which focused on agricultural modernization, 
enhanced agro-ecological environment management, 
and promoted resource-efficient and environmentally 
friendly farming practices.

The fourth stage marked a decline. During this 
period, China’s total agricultural carbon emissions 
decreased by 13%, with the largest annual reduction 
being 2.97%. Notably, emissions from agricultural 
materials and paddy fields saw a substantial decrease, 
from 9,366,300 tons to 6,680,200 tons. This reduction 
can be attributed to the implementation of China’s “Zero 
Growth in Fertilizer Use by 2020” and “Zero Growth in 
Pesticide Use by 2020” policies in 2015. These initiatives 
led to improved efficiency in energy and agricultural 
material use and a considerable decrease in the number 
of large livestock holdings [5].

As shown in Fig. 1, from 2000 to 2021, China’s total 
agricultural carbon emissions demonstrated an upward 
trend, yet the emissions intensity markedly decreased 
from 10,238,200 tons per 10,000 yuan to 103.20 tons 
per 10,000 yuan. This decline can be attributed to 
several factors: Firstly, technological advancements [40], 
such as the enhancement of seed quality, precision in 
fertilizer application, and the adoption of water-saving 
irrigation technologies, including the propagation of 
super rice planting in Jiangsu and Zhejiang provinces 
and drip and sprinkler irrigation systems in arid 
regions like Gansu. Secondly, significant improvements 
in management practices [41], such as modernized 
approaches to agricultural management encompassing 
better land management, crop rotation, and reduced 
tillage frequency, have increased soil carbon storage and 
lowered greenhouse gas emissions. Thirdly, a strategic 
shift in cropping patterns [42], including corn and 
soybean rotations in Northeast China and the expansion 

Table 1. Structure, total amount and intensity of agricultural carbon emissions, 2000-2021.

Year Agricultural 
Materials Land Paddy 

Land

Livestock 
and Poultry 

Farming 

Total 
Carbon 

Emissios

Growthm 
Rate 

Carbon 
Emission 
Intensity

Carbon Emission 
Intensity Growth 

Rate Year

2000 7843.18 1922.80 939.60 1561.27 10266.8 —— 1023.80 ——

2001 6042.69 1932.39 903.57 1567.05 10445.7 0.01742 942.20 -0.08 

2002 6192.39 1931.84 884.41 1606.10 10614.7 0.01618 872.10 -0.07 

2003 6334.57 1915.82 831.28 1659.30 10740.9 0.01189 781.60 -0.10 

2004 6755.07 1931.75 889.96 1713.39 11290.1 0.05113 697.60 -0.11 

2005 6998.44 1952.48 904.66 1749.12 11604.7 0.02786 619.50 -0.11 

2006 7235.10 1942.04 907.51 1732.75 11817.4 0.01833 538.50 -0.13 

2007 7543.17 1985.83 906.90 1352.38 11788.2 -0.0024 436.50 -0.19 

2008 7642.36 2046.65 917.00 1355.63 11961.6 0.01471 374.70 -0.14 

2009 7887.86 2075.11 929.10 1373.99 12266.0 0.02545 351.90 -0.06 

2010 8137.77 2110.42 936.83 1359.94 12544.9 0.02274 304.40 -0.13 

2011 8361.98 2150.99 942.59 1339.52 12795.0 0.01994 262.20 -0.14 

2012 8566.91 2190.64 945.10 1342.73 13045.3 0.01956 242.20 -0.08 

2013 8714.46 2206.06 950.59 1348.85 13219.9 0.01338 222.90 -0.08 

2014 8850.32 2237.03 950.52 1372.44 13410.3 0.01440 208.40 -0.07 

2015 8886.33 2275.46 947.56 1392.55 13501.9 0.00683 196.00 -0.06 

2016 8783.12 2311.01 936.62 1362.94 13393.7 -0.0080 179.40 -0.08 

2017 8578.07 2327.10 964.23 1219.85 13089.2 -0.0227 157.30 -0.12 

2018 8233.35 2337.91 946.74 1199.26 12717.2 -0.0284 138.30 -0.12 

2019 7885.32 2348.85 931.19 1173.25 12338.6 -0.0297 125.10 -0.10 

2020 7650.66 2366.55 943.16 1253.61 12213.9 -0.0101 120.50 -0.04 

2021 7517.97 2370.32 668.02 1303.73 11860.0 -0.0289 103.20 -0.14 

Cumulative -4% 23% -29% -16% 16% —— -0.8992 ——

Average Rate -0.18% 1.045% -1.31% -0.72% 0.727% —— -0.0408 ——
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of economic forestry in Yunnan and Guizhou, haves 
reduced dependence on water- and energy-intensive 
crops. Fourthly, the move towards large-scale production 
in regions like Hebei and Henan has improved resource 
use efficiency and reduced carbon emissions per unit 
of output [43]. Finally, policy and regulatory initiatives 
by the Chinese government, designed to foster low- 
carbon agriculture [44], enhance energy efficiency, 
and encourage renewable energy adoption, have 
been crucial. Collectively, these elements have led to  
a steady decrease in the intensity of agricultural carbon 
emissions in China, a trend that is expected to persist in 
future years.

Analysis of Regional Differences  
in the Administrative Geography

Table 2 delineates the total volume and intensity of 
agricultural carbon emissions across various provinces 
in China. In 2021, the total agricultural carbon emissions 
across China’s provinces varied significantly. Henan, 
Shandong, Heilongjiang, Xinjiang, Anhui, Jiangsu, 
Hebei, Hunan, Inner Mongolia, and Sichuan were the 
top ten emitting provinces, collectively contributing 
66.9407 million tons of carbon emissions. This 
accounted for 56.44% of the total national agricultural 
emissions. In contrast, the lowest emissions were 
recorded in Beijing, Shanghai, Tianjin, Tibet, Qinghai, 
Hainan, Ningxia, Chongqing, Guizhou, and Shanxi. 
Together, these ten provinces contributed only 10.4936 
million tons, representing a mere 8.85% of China’s total 
agricultural carbon emissions.

The distribution of agricultural carbon emissions 
across China’s provinces reveals a concentration in 
major grain-producing areas such as Henan, Jiangsu, 
and Sichuan. The extensive cultivation of grain in these 
regions necessitates the use of pesticides, fertilizers, 
and other agrochemicals, leading to substantial carbon 

emissions. Moreover, the carbon emissions from 
agriculture are notably high in Xinjiang, Inner Mongolia, 
and Sichuan, partly due to the prevalence of animal 
husbandry. Remarkably, Inner Mongolia experienced 
the most significant increase in agricultural carbon 
emissions, surging by 117.33%, the highest among all 
Chinese provinces. Conversely, regions like Beijing 
and Shanghai have relatively low agricultural carbon 
emissions, attributed to geographical and landscape 
constraints that limit the use of extensive agricultural 
machinery.

From 2000 to 2021, there has been a general 
decline in the carbon emission intensity of agriculture 
across all Chinese provinces. This trend, aligning 
with Li’s study [37], demonstrates economic growth 
alongside a decrease in carbon emissions per unit of 
output. The reduction in carbon emission intensity 
is particularly notable in economically advanced 
regions such as Shanghai, Tianjin, and Beijing. This 
decline can be attributed to two primary factors: the 
adoption of advanced agricultural technologies and 
management practices, enhancing production efficiency 
while reducing carbon emissions per output unit, 
and the optimization and upgrading of the industrial 
structure[45], leading to more efficient and lower-
emission agricultural production. Overall, China’s 
agricultural carbon emission intensity displays a marked 
regional disparity, characterized as “high in the west  
and low in the east.” In 2000, Tibet had the highest 
intensity at 5,869.95 tons per ten thousand yuan, 
compared to Shanghai’s lowest at 120.46 tons per ten 
thousand yuan, a nearly 49-fold difference. By 2021, 
Heilongjiang had the highest intensity at 481.5007 
tons per million yuan, whereas Beijing had the lowest 
at only 3.8539 tons per million yuan, a disparity of 
approximately 125 times.

Fig. 1. Trends in total agricultural carbon emissions and intensity.



Wu H., et al.4798

Analysis of Spatial and Temporal Evolution

Fig. 2 presents a kernel density analysis of China’s 
agricultural carbon emissions. In 2001, the emissions 
displayed a dense, single-peak distribution. By 2006, 
the curve’s center had shifted rightward, maintaining 
a certain level of inter-provincial disparity. In 2011, 
the  emission  curve  continued  its  rightward  shift, 

transitioning from a single peak to a double peak. This 
indicated a decrease in emissions in some regions and 
a widening of the inter-provincial gap. By 2016, the 
curve had evolved into a “primary and secondary” 
bimodal pattern with further rightward movement of 
the center, suggesting an overall increase in intensity 
but with reductions in some areas, amplifying provincial 
differences. In 2021, the curve’s center moved leftward, 

Table 2. Total agricultural carbon emissions and intensity

Region
2000 year 2021 year Change in 

Total Carbon 
Emissions

Change 
in Carbon 
Intensity

Total 
Emissions Rank Intensity Rank Total 

Emissions Rank Intensity Rank

Beijing 42.70 31 130.27 30 15.82 31 3.8539 31 -62.95 -97.04

Tianjin 46.25 30 290.57 29 34.40 29 21.9317 29 -25.62 -92.45

Hebei 660.94 3 1428.07 16 601.30 7 148.8462 12 -9.02 -89.58

Shanxi 187.05 23 1013.44 22 221.28 22 96.7532 23 18.30 -90.45

Inner Mongolia 258.94 18 1682.41 12 562.76 9 265.8784 6 117.33 -84.20

Liaoning 281.32 16 602.51 26 343.33 16 124.5332 15 22.04 -79.33

Jilin 256.90 19 1466.83 13 414.59 15 314.9448 4 61.38 -78.53

Heilongjiang 380.41 11 1332.2 20 715.43 3 481.5070 1 88.07 -63.86

Shanghai 57.97 28 120.46 31 23.76 30 5.4420 30 -59.01 -95.48

Jiangsu 642.30 4 750.9 24 602.94 6 51.3607 25 -6.13 -93.16

Zhejiang 328.85 14 533.43 27 282.40 20 38.1408 27 -14.12 -92.85

Anhui 562.56 5 1800.02 7 608.67 5 142.9962 13 8.20 -92.06

Fujian 261.59 17 694.89 25 231.08 21 46.6209 26 -11.66 -93.29

Jiangxi 346.92 13 1731.92 9 335.06 18 112.3325 17 -3.42 -93.51

Shandong 946.48 1 1143.35 21 817.96 2 98.6974 22 -13.58 -91.37

Henan 852.27 2 1686.66 11 1008.92 1 173.7372 10 18.38 -89.70

Hubei 516.38 8 1456.48 15 547.01 11 109.2025 19 5.93 -92.50

Hunan 518.34 7 1459.5 14 565.05 8 123.6065 16 9.01 -91.53

Hubei 428.90 9 396.75 28 415.39 14 33.3057 28 -3.15 -91.61

Guangxi 408.42 10 1963.56 5 448.06 13 177.7376 9 9.71 -90.95

Hainan 70.33 25 1335.04 19 91.22 26 140.2435 14 29.70 -89.50

Chongqing 164.10 24 900.61 23 183.23 24 65.2587 24 11.66 -92.75

Sichuan 554.88 6 1412.56 17 553.71 10 102.3730 21 -0.21 -92.75

Guizhou 203.72 21 1978.06 4 212.17 23 109.0345 20 4.15 -94.49

Yunnan 347.34 12 1710.95 10 455.04 12 167.5295 11 31.01 -90.21

Xizang 67.97 26 5769.95 1 80.56 28 387.2678 3 18.52 -93.29

Shannxi 252.09 20 1397.39 18 336.44 17 111.6932 18 33.46 -92.01

Gansu 187.61 22 1781.84 8 308.25 19 301.4571 5 64.30 -83.08

Qinghai 67.04 27 2542.28 2 87.53 27 258.5891 7 30.56 -89.83

Ningxia 56.60 29 1918.64 6 99.39 25 216.6228 8 75.60 -88.71

Xinjiang 309.67 15 2270.97 3 657.33 4 402.9841 2 112.27 -82.25
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and the pattern developed into a “primary with two 
smaller” triple-peak, signifying a significant overall 
reduction in emissions, yet with increases in certain 
areas, leading to a more dispersed distribution of 
carbon emissions. Overall, China’s agricultural carbon 
emissions have transitioned from an increasing to  
a decreasing trend, but the gap between provinces 
has grown annually. This shift is likely attributable to 
varying agricultural development strategies, industrial 
restructuring, and agricultural modernization processes 
across provinces, where diverse strategies and models 
have resulted in an expanding inter-provincial disparity 
in carbon emission intensity.

In addition to analyzing the national overview, this 
study also delves into the agricultural carbon emissions 
from four primary sources: agricultural materials, 
soil, paddy fields, and animal husbandry, with detailed 
analysis results to follow.

1. The trend of carbon emissions from agricultural 
materials experienced a significant fluctuation from 2001 
to 2021, initially increasing and then decreasing. This 
trend exhibited a bimodal characteristic in the carbon 
emission density, signifying simultaneous increases 
and decreases in different regions and resulting in a 
varied overall distribution. This shift can be attributed 
to the 19th Congress of the Communist Party of China 
(CPC) promoting eco-friendly agriculture and efficient 
energy use, along with the adoption of renewable energy 
contributing to the reduction of agricultural carbon 
emissions.

2. Regarding land carbon emissions, there has 
been a slight overall decrease, with more noticeable 
peak variations and growing regional disparities. From 
2001 to 2021, these emissions showed a multipolar 
trend, influenced by industrialization and urbanization 
processes. Urbanization in the eastern coastal areas and 
major cities has altered rural land-use patterns, leading 
to varied carbon emission levels.     

3. Carbon emissions from rice cultivation have 
generally declined, with a relatively narrow curve span 
and minimal changes in emissions. However, there was 
a notable peak in 2021, potentially due to advancements 
in China’s rice cultivation technology and agricultural 
supply-side structural reforms that reduced rice 
cultivation and, consequently, its carbon emissions.

4. As for carbon emissions from livestock and 
poultry farming, the overall trend is downward, 
with a small curve span. A significant decrease was 
observed between 2001-2006, which coincides with 
the implementation of stricter “livestock and poultry 
farming pollution prevention and control regulations” 
in China. For instance, the rigorous environmental 
protection standards led to a notable shift in pig farming, 
exemplified by the “southern pig north” phenomenon.

Overall, the trends in China’s agricultural carbon 
emissions are shaped by a combination of policy 
guidance, technological progress, industrialization, 
urbanization, and heightened environmental awareness. 
These factors have collectively contributed to a complex 
and dynamic emission pattern, reflecting the regional 
and intra-industry variability within China’s agricultural 
sector.

Influencing Factors and Peak  
Carbon Prediction

Global Spatial Autocorrelation Test

Prior to delving into the factors influencing 
agricultural carbon emissions in China, this study first 
examines the spatial distribution characteristics of these 
emissions using the global spatial autocorrelation test. 
The Moran’s I index for agricultural carbon emissions 
was consistently and significantly positive across all 
years, oscillating between 0.24 and 0.35. This indicates 

Fig. 2. Results of kernel density analysis of agricultural carbon emissions.



Wu H., et al.4800

a substantial positive spatial autocorrelation. Notably, 
the value of Moran’s I progressively increased from 
0.25 in 2000 to 0.323 in 2021. This trend signifies a 
strengthening of positive correlation over time, implying 
that the similarity in agricultural carbon emissions 
among Chinese provinces and their neighboring regions 
has intensified. Furthermore, the spatial distribution 
pattern of carbon emissions has increasingly become 
more clustered. Although there were fluctuations in 
individual years, the overall trend clearly points towards 
a rising degree of aggregation.

Regression Analysis of Influencing Factors

The analysis utilized the constructed model as 
outlined in Equation (8), employing Stata 17.0 for fitting. 
The resulting mean Variance Inflation Factor (meanVIF) 
of 4.06 indicates the absence of multicollinearity issues. 
Within the STIRPAT model framework, all data were 
logarithmically transformed to enhance linearity and 
mitigate the effects of heteroskedasticity on time series 
data, thereby improving the regression results’ fit. 
Table 3 presents the t-test results for the independent 
variables. These results demonstrate a highly significant 
linear relationship between the dependent variable, 
carbon emissions from agricultural land inputs, and 
the independent variable, the agricultural population. 
Additionally, the other two variables show a positive 
correlation with agricultural carbon emissions, lending 
significance to the regression equation. The model’s 
R-squared (R2) value of 0.712 suggests that the model 
fit is adequate. Furthermore, the F-statistic stands at 
182.33, and all P-values are below 0.05, collectively 
affirming the regression equation’s robustness and 
statistical significance.

The regression analysis results reveal that the 
coefficient for the agricultural population is 0.495. When 
compared to the effects of other variables on agricultural 
carbon emissions, the agricultural population emerges 
as the most significant factor influencing these 
emissions in China, followed in descending order by per 
capita agricultural GDP, forestry area, and the level of 
agricultural technology. Holding other factors constant, 
a 1% increase in the agricultural population corresponds 
to a 0.495% increase in carbon emissions. This trend 
highlights the growing conflict between humans and 
land resources, necessitating increased agricultural land 
inputs to boost food production. Nonetheless, China’s 
advancing urbanization is expected to gradually reduce 

the size of the agricultural population, which may, in 
turn, dampen carbon emissions from agricultural land 
inputs.The influence of agricultural technology level on 
carbon emissions from farmland inputs primarily stems 
from agricultural economic development, including the 
sector’s transformation and upgrading. The escalated 
use of agricultural machinery for production purposes 
inevitably leads to increased energy consumption, which 
indirectly contributes to a rise in carbon emissions from 
farmland inputs.

Scenario Design and Trend Forecasting 
of Agricultural Carbon Emissions

Scenario Design for Agricultural Carbon Emissions

BP neural networks offer an efficient, accurate, and 
flexible approach for predicting agricultural carbon 
emissions and are, particularly adept at handling complex 
datasets  and  identifying  nonlinear  relationships. In 
this study, four BP neural networks were developed 
using MATLAB. The transfer functions for the hidden 
and output layers were set as ‘tansig’ and ‘purelin’, 
respectively, with ‘trainlm’ as the training function. 
The data samples were initially divided into 15 training 
and 6 testing groups, and the number of nodes in the 
hidden layer was optimized through multiple training 
iterations to finalize its configuration. The resulting 
model structure was determined to be 3-7-1, exhibiting  
a training sample mean square error of 0.0396 and an R2 
value of 0.998. Both training and testing outcomes were 
favorable (as shown in Fig. 3), validating the model’s 
applicability for measurement purposes. Consequently, 
the study’s 683 samples will be analyzed using this 
optimally trained BP neural network.

Scenario analysis, a prevalent method in carbon 
emission projection studies, hinges on the scientific 
rigor of its design for accuracy in predictions. Previous 
research and policy documents have identified 
population, economy, and technology level as significant 
determinants of carbon emissions. Given the challenge 
of manually adjusting demographic and economic 
factors within existing policy frameworks and economic 
contexts, this study forecasts China’s agricultural 
carbon emissions under varying scenarios by modifying 
the technology level parameter. The technological 
advancement in agriculture is quantified as the degree 
of mechanization, measured by the ratio of total 
agricultural machinery power to the total sown area.

Table 3. Results of regression analysis.

Variable Regression coefficient Standard error T-value P-value

P 0.495*** 0.118 4.12 0.000

A 0.386*** 0.081 4.76 0.000

T 0.176** 0.065 2.73 0.011

Constant -2.559** 1.248 -2.05 0.049
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The Chinese government’s National Agricultural 
Mechanization Development Plan for the 14th Five-Year 
Plan stipulates a target mechanization rate of 75% 
by 2025. While the contribution rate of agricultural 
technological progress in developed countries typically 
exceeds 80%, with the United States and Germany 
surpassing 90% and the Netherlands reaching up to 
97%, China achieved over 60% in 2020 and 70.3% 
in 2021. Consequently, the projected benchmarks for 
China’s agricultural mechanization in 2022, 2025, 
2028, and 2033 are set at 72%, 74%, 77%, and 80% 
for standard growth; 73%, 80%, 87%, and 95% for 
high-speed growth; and 71%, 72%, 74%, and 76% for 
low-speed growth. The baseline mechanization level 
for 2025, at 74%, aligns closely with the 75% policy 
target, validating the robustness of the technology level 
scenario settings employed in this research.

Agricultural Carbon Emissions Trend

The parameters defined in the scenario analysis 
were integrated into Equation (7) to forecast China’s 

carbon emissions from 2022 to 2033. The projections 
indicate that for the year 2022, carbon emissions under 
the baseline, high-speed, and low-speed technology 
level scenarios are expected to be 12,044, 12,242, 
and 11,942 tons, respectively. Similarly, for 2028, 
these projections are 13,344, 14,683, and 12,101 tons, 
respectively. Utilizing this forecast data, graphical 
representations were created to illustrate the variations 
in carbon emissions across the different technology level 
scenarios.

Fig. 4 presents the carbon emission projections under 
various technological level scenarios from 2022 to 2034. 
Relative to the baseline scenario, scenarios with high-
speed and low-speed technology levels demonstrate the 
potential for earlier attainment of carbon emission peaks 
and reduced peak values. In the baseline technology 
level scenario (T1), carbon emissions initially peak 
around 2026, followed by a decline, then a resurgence 
in 2028, and eventually start decreasing after reaching  
a second peak in 2030. Under the high-speed technology 
level scenario (T2), carbon emissions are projected 
to increase beginning around 2024, peaking in 2028,  

Fig. 3. Training results and prediction data of the BP neural network.

Fig. 4. Carbon Emissions in China under Different Technology Level Scenarios.
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and subsequently diminishing gradually. Conversely, the 
low-speed technology level scenario (T3) shows a more 
gradual growth trend, with carbon emissions escalating 
sharply in 2022, dipping slightly, then increasing 
again in 2024, peaking around 2026, and thereafter 
experiencing a steady decrease. Overall, the baseline 
(T1), high-speed (T2), and low-speed (T3) technology 
level scenarios indicate a consistent trend: China’s 
agricultural sector’s carbon emissions are expected to 
reach their peak around 2030 within the framework 
of green development. While the exact peak values 
may vary, these trajectories underscore the crucial 
impact of technological advancements in reducing 
carbon emissions and addressing climate change. By 
embracing technological upgrades, earlier peaking of 
carbon emissions can be facilitated, and the magnitude 
of emissions at the peak can be diminished, offering  
a viable strategic approach to combating climate change.

 Robustness Test

To validate the feasibility and robustness of the 
empirical findings, this study employs three methods 
for robustness assessment. Firstly, the analytical model 
is substituted with the Geographically and Temporally 
Weighted Regression (GTWR) model for robustness 
analysis. GTWR is a statistical technique adept at 
handling spatial heterogeneity, offering significant 
spatial sensitivity and flexibility. This is crucial since 
the baseline STIRPAT model does not adequately 
account for the influence of geographic location on 
agricultural carbon emissions. Given China’s vast and 
diverse landscape, regions vary in the characteristics 
and determinants of agricultural carbon emissions. 
Employing the GTWR model enables the identification 
of inter-regional differences, thereby enhancing the 
scientific validity and precision of the research. This 
approach provides a robust scientific foundation for 
formulating more targeted and effective regional 
strategies to mitigate agricultural carbon emissions. 
Secondly, this study utilizes instrumental variables, 

specifically using the lagged values of each explanatory 
variable as instrumental variables. The two-stage least 
squares method is then applied to perform a robustness 
test on the carbon emission efficiency across the three 
major regions. Thirdly, to factor in the impacts of 
extreme values and non-randomness, the data undergo 
a before-and-after 1% trimming process, and the 
robustness is tested accordingly. The robustness test 
results, as indicated in Table 4, reveal that the GTWR 
model exhibits a good fit. The direction and magnitude 
of its estimated coefficients align closely with those 
of the original STIRPAT model. Additionally, results 
from employing lagged instrumental variables and 
tail-trimming indicate that the nature and significance 
of the factors remain largely consistent with the initial 
regression outcomes. These findings collectively 
reinforce the reliability of the empirical analysis 
conducted in this study.

Conclusions and Policy Recommendations

Conclusions

This study delves into the spatial and temporal 
evolution of China’s agricultural carbon emissions, 
based on a comprehensive measurement of these 
emissions. It examines the influencing factors and 
dynamic trends, leading to the following key findings:

1. Spatial and Temporal Evolution of Agricultural 
Carbon Emissions:

From 2000 to 2021, China’s aggregate agricultural 
carbon emissions followed an inverted “U” pattern, 
initially increasing and then decreasing. During this 
time frame, emissions from agricultural materials, 
paddy fields, and livestock and poultry farming 
exhibited a downward trajectory, while emissions from 
land use escalated. Spatially, the intensity of agricultural 
carbon emissions across all Chinese provinces generally 
declined, with a prominent “high in the west and low in 
the east” spatial distribution. The spatial autocorrelation 

Variable GTWR Variable IV Trimming 1%

Bandwidth 0.115 I ____ 0.490*** (0.110)

Residual Squares 1249020 P 0.472*** (0.047) 0.340*** (0.078)

Sigma 42.795 A 0.378*** (0.031) 0.161** (0.059)

AICc 7191.450 T 0.179*** (0.024) -2.058* (1.157)

Spatio-temporal Distance Ratio 0.642 Constant term ____ -0.846 (2.007)

Trace of S Matrix 58.782 Individual effect YES YES

Adjusted R2 0.974 Time effect YES YES

R2 0.974 R² 0.681 0.687

N 682 Sample size 651 682

Table 4. Results of the robustness test.
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test reveals a significant positive correlation in emissions 
among provinces, which has strengthened over time. 
This suggests an increasing similarity in emission 
patterns across provinces and a rising trend in the spatial 
concentration of agricultural carbon emissions.

2. Analysis of Influencing Factors and Peak 
Prediction:

The study identifies the agricultural population as the 
primary driver of China's agricultural carbon emissions, 
followed by per capita agricultural GDP and the level of 
agricultural technology. Population growth intensifies 
land-use conflicts and influences agricultural inputs and 
outputs. Urbanization trends, which lead to a decreasing 
agricultural population, are expected to curtail 
agricultural carbon emissions. Projections indicate that, 
despite the challenges posed by agricultural population 
growth, China's agricultural carbon emissions are likely 
to reach their peak by 2030 under a scenario driven by 
technological advancement.

Policy Recommendations

Based on the above conclusions, this paper puts 
forward the following suggestions:

Optimization of agricultural industry structure 
and transition to sustainable production modes. To 
facilitate carbon emission reduction in agriculture, 
optimizing the industry’s structure, encompassing 
planting, animal husbandry, and forestry, is essential. 
In the realm of crop production, strategic adjustments to 
the crop structure can mitigate high-carbon emissions. 
Implementing practices such as water-saving and 
drought-resistant crop rotation and diversifying crop 
types are pivotal measures. For the livestock sector, 
reconfiguring breeding practices to limit high-emission 
livestock breeds is advisable, alongside the promotion 
of low-carbon feed technologies and advanced manure 
management techniques. In the field of forestry, the 
efficient utilization of forest resources is key, coupled 
with the development of ecological forestry and  
a green economy, including biomass energy and forest-
based ecotourism. Additionally, this strategy advocates 
for the adoption of intensive recycling agriculture and 
low-carbon agricultural practices, which pivot away 
from traditional farming methods. This transformation 
aims to reduce unnecessary energy and material 
consumption, thereby decreasing agricultural carbon 
emissions and simultaneously boosting the agricultural 
economy’s quality and efficiency.

To promote carbon emission reduction in agriculture, 
it is essential to optimize the agricultural industry’s 
structure, encompassing planting, animal husbandry, and 
forestry. In the planting sector, adjustments should focus 
on crop diversification to reduce high-carbon emission 
crops. Strategies like crop rotation and crop type 
optimization can effectively lower carbon emissions.  
For livestock, it’s advisable to modify breeding practices 
by decreasing high-carbon emission livestock breeds, 
adopting low-carbon feed technology, and implementing 

advanced manure treatment methods. In forestry, 
rationalizing forest resource usage and emphasizing 
ecological forestry and green economy initiatives, such as 
biomass energy and forest eco-tourism, are encouraged. 
Furthermore, promoting intensive recycling and low-
carbon agriculture is pivotal, transforming traditional 
agricultural production methods to reduce energy and 
material inefficiencies, thus decreasing carbon emissions 
while enhancing agricultural economic quality and 
efficiency. Agricultural technological innovation aligned 
with local conditions is pivotal for realizing green 
agricultural development, encompassing precision 
techniques, new crop varieties, and ecological models. 
The research also advocates for green and low-carbon 
agricultural machinery and equipment development, 
tailored to geographical conditions, and the adoption of 
clean energy sources to ensure sustainable and efficient 
agricultural carbon emission reduction.

To ensure the effectiveness of low-carbon 
agriculture, it is imperative to conduct a precise 
analysis of agricultural carbon emissions in each 
region and develop scientifically sound agricultural 
carbon reduction plans. These plans should align with 
regional strategies for rural revitalization and land 
resource management, incorporating specialized layouts 
with well-defined objectives and milestones for each 
phase. Consideration must be given to the geographical 
variations in the efficiency of agricultural carbon 
reduction. In major grain-producing regions, promoting 
agricultural consolidation is vital to reducing the use 
of chemical fertilizers and pesticides. Meanwhile, 
regions with high carbon emissions per unit area, such 
as South China, should receive government support 
for establishing recycling systems for agricultural 
waste and data management platforms, along with the 
advancement of smart agriculture practices. Tailored 
emission reduction plans should be devised based on the 
region’s unique agricultural development and resource 
capabilities. The establishment of regional cooperation 
mechanisms is essential to assimilate the experiences of 
industrialization and large-scale agriculture development 
from more advanced regions, thus fostering green 
and high-quality agricultural growth. Strengthened 
inter-regional collaboration and mutually beneficial 
arrangements can leverage the advantages of individual 
agricultural resource endowments, generate economies 
of scale, alleviate “resource congestion,” and create 
a conducive environment for advancing agricultural 
carbon emission reduction across neighboring areas.

The establishment of a comprehensive legal 
framework for carbon emissions and the development of 
specialized environmental regulations for agricultural 
emissions reduction are crucial steps. While China  
has made initial strides in its environmental legal  
system, it still requires significant enhancements to 
align with the goals of carbon reduction and low-carbon 
agriculture, akin to the legal systems in developed 
nations. To address this, there is a need to enhance 
the enforcement efficacy of existing laws and 
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regulations. This involves bolstering command-type 
environmental regulations, crafting punitive measures 
for environmental pollution and degradation, and 
introducing incentivizing policies aimed at encouraging 
agricultural enterprises to invest in environmentally 
friendly practices and energy-efficient low-carbon 
initiatives, thereby enhancing the overall sustainability 
of green agricultural production. Furthermore, the 
introduction of a dedicated Low Carbon Agriculture 
Law is essential to delineating the responsibilities of 
legal entities and the roles of law enforcement agencies. 
This would facilitate the creation of a distinctive 
low-carbon agriculture legal framework tailored to 
China’s specific circumstances. Such legislation should 
encompass the oversight of the lawful use and production 
of materials, including fertilizers, pesticides, plastic 
mulch, and agricultural energy, by agricultural product 
manufacturers, farmers, pesticide and chemical fertilizer 
producers, and agricultural tool manufacturers involved 
in agricultural production activities. Additionally, 
 it should address the responsible management of 
livestock and poultry manure through scientifically 
sound practices.

Elevating awareness of low-carbon development 
within the agricultural community and fostering the 
concept of sustainable, eco-friendly practices are 
pivotal in achieving agricultural carbon emission 
reduction and the overarching “dual-carbon” objectives. 
To bolster farmers’ understanding of low-carbon and 
sustainable agriculture, it is essential to amalgamate 
traditional smallholder farming with modern green 
agricultural practices. This convergence aims to instill 
ecological mindfulness and prompt transformative 
shifts in production methodologies. Concrete steps 
involve facilitating the organization of farmers, 
reinforcing agricultural cooperatives, nurturing 
emerging agricultural production entities, providing 
comprehensive skills training, offering financial 
support for agricultural emission reduction initiatives, 
and upgrading agricultural production technologies. 
Simultaneously, there is a pressing need to augment 
investments in the dissemination of agricultural science 
and technology. This entails optimizing the utilization 
of chemical fertilizers and pesticides, curbing the 
deployment of carbon-intensive agricultural materials 
and equipment, and enhancing the competence of 
agricultural personnel through targeted training and 
technology exchanges. Moreover, it is imperative 
to heighten consumers’ cognizance of low-carbon 
agriculture and guide individuals to embrace a low-
carbon consumption pattern through educational 
campaigns and public outreach efforts. This strategic 
approach is instrumental in realizing the dual objectives 
of reducing agricultural carbon emissions and bolstering 
agricultural carbon sequestration. By implementing 
these measures systematically, the fruition of agricultural 
carbon emission reduction and the attainment of the 
“dual-carbon” goals can be effectively facilitated.

Limitations and Future Perspective

This paper primarily utilizes data from China, 
constrained by data availability and accuracy. 
Consequently, the analysis of agricultural carbon 
emissions may not fully represent global variations. 
Future research should aim to broaden the geographic 
scope of data collection to enhance the richness and 
diversity of the sample. Additionally, while this study 
employed the STIRPAT model to assess the impacts of 
population, affluence, and technology level on carbon 
emissions, it did not comprehensively explore other 
factors influencing agricultural carbon emissions and 
their interplay. Future studies could improve upon this 
by considering the roles of policies, market forces, and 
technological advancements. Moreover, the current 
research predominantly concentrates on the general trend 
of agricultural carbon emissions in China, neglecting 
the regional nuances. Future investigations should delve 
into the specific characteristics of agricultural carbon 
emissions in distinct regions, including their reactions 
to local policy shifts and environmental changes. This 
would enable the provision of more precise and tailored 
recommendations for emission reduction strategies.
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