
Introduction

As an agricultural powerhouse, China’s agricultural 
carbon emissions are an important component of its overall 
carbon emissions [1, 2]. In recent years, the production 

of grain in China has been facing issues such as high 
costs, high energy consumption, and low efficiency. 
Particularly in grain production, there is a shortage 
of rural labor, leading to excessive use of fertilizers 
and pesticides by farmers in order to increase yields.  
This has resulted in a significant amount of carbon 
emissions and the worsening of unsustainable land 
use, posing a further threat to China’s food security. 
Therefore, green production in grain production is not 
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Abstract 

To identify the influencing factors of green production in Chinese grain and explore the effective 
pathways for achieving green and sustainable production of grain, thus ensuring the modernization 
of grain production in China, this research utilizes a three-stage DEA model based on non-
desirable outputs. Using data from China’s land economic survey, the green production efficiency  
of 1810 land parcels is calculated by removing environmental factors and random disturbances.  
The random forest model is employed to rank the importance of factors influencing green production 
efficiency of grain, and the ISM model is utilized to analyze the hierarchy and associative pathways 
between factors. The following research conclusions are drawn: Firstly, environmental factors have  
an impact on green production efficiency of grain, and the use of the three-stage DEA model is 
necessary. From an overall perspective, there is still significant room for improvement in the average 
green production efficiency of grain, which stands at 0.76. Secondly, factors such as land contracting, 
land fragmentation, transportation accessibility, and land parcel size are important in influencing green 
production efficiency of grain. Specifically, land contracting and transportation accessibility have  
a positive impact on green production efficiency, while land fragmentation and land parcel size have  
a negative impact overall. Thirdly, the relationships between factors affecting green production  
efficiency of grain can be divided into four levels and three layers. There are five pathways  
of propagation, all of which have a common characteristic of influencing fertilizer usage, pesticide 
usage, and the quantity of self-owned machinery, thereby affecting green production efficiency of grain.

Keywords: grain production, green production efficiency of grain, three-stage DEA, random forest
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only a necessary requirement for energy saving and 
emission reduction but also an essential requirement 
for safeguarding China’s food security.Against the 
backdrop of achieving “carbon neutrality” and “peak 
carbon emissions,” it is crucial to explore the current 
level of green production efficiency in grain production. 
Which factors influence the green production efficiency 
of grain? And what are the main factors influencing it? 
Identifying the driving forces behind green production 
in Chinese grain and exploring the guarantee of green 
and sustainable production in ensuring food security is 
of great significance.

The green production efficiency of food refers 
to reducing carbon emissions and minimizing 
environmental pollution while ensuring output [3, 4]. 
The academic community has conducted extensive 
research on the green production efficiency of 
agriculture. From a research perspective, there are 
mainly two angles: first, based on existing economic 
theories and the perspective of sustainable agricultural 
development, research on the green production of food 
mainly focuses on environmental pollution caused by 
agricultural production, considering factors such as 
pollution from fertilizers and pesticides [5, 6]; Second, 
from the perspective of overall balance in the ecosystem 
and analyzing research results within a global 
framework, exploring how to promote the development 
of food production without damaging the ecological 
environment [7-9]. In terms of research content, 
current studies on the green production efficiency of 
food mostly rely on macro-level data from provinces 
and countries to measure and compare the green 
production efficiency of food, analyze the deficiencies, 
and propose improvement strategies. However, there is 
less analysis of the impact of micro-level factors on the 
green production efficiency of food [10-13]. In terms of 
research methods, traditional DEA models are mostly 
used to calculate the green production efficiency of food, 
and some scholars use SFA models, SBM models, and 
others. However, they rarely consider the influence of 
external environmental factors, leading to biases in the 
calculation of agricultural green production efficiency. 
Furthermore, current research mainly employs the Tobit 
model to study subsequent influencing factors, which 
cannot further reveal the relationships between factors 
affecting the green production efficiency of food and 
lacks systematic analysis.

In summary, based on the literature review 
and problem analysis, this study’s main marginal 
contributions are as follows: First,this study examines 
the production efficiency of different plots using micro-
level data and thoroughly explores the factors influencing 
the green production efficiency of food in different 
plots, providing more targeted recommendations. 
Second, considering the varying levels of disasters 
and land quality in different plots, this study utilizes 
a three-stage DEA model. Analyzes the impact of 
external environmental factors and random errors on 
input variables.Third, this study constructs a random 

forest model to identify the factors with the greatest 
impact on the green production efficiency of food and 
explores heterogeneity based on regional characteristics.  
The study utilizes partial dependence plots to reveal 
the impact pathways of important features on the green 
production efficiency of food. Overall, this study aims 
to make significant contributions by investigating the 
factors influencing the green production efficiency 
of food at the micro-level, incorporating external 
environmental factors, and exploring the causal 
pathways and relationships among these factors.

Materials and Methods 

Theoretical Analysis

This study systematically analyzes the impact of 
household characteristics on the efficiency of green  
food production from five perspectives: village 
characteristics, household decision-maker characteristics, 
household characteristics, green production behavior 
characteristics, and land management characteristics.

Village Characteristics

Farmers take measures according to the external 
environment, and the transportation and economic 
characteristics of the villages where farmers are 
located affect the input of external resources, 
thereby affecting the efficiency of green production. 
Existing research has shown that the improvement of 
agricultural infrastructure is conducive to agricultural 
production. Rural infrastructure construction is an“early 
investment” that enables cost-saving measures such as 
large-scale agricultural production and technological 
progress, which can affect the efficiency of green food 
production [14].

Household Decision-Maker Characteristics

Household decision-makers determine the allocation 
of household resources, as well as the allocation of 
food production materials [15]. The level of resource 
allocation by farmers is a microcosm of the efficiency 
of green food production, often influenced by individual 
characteristics of farmers. For example, younger farmers 
with higher education levels have a higher willingness 
to accept green production technologies, which affects 
the efficiency of green food production.

Household Characteristics

Household characteristics determine the quantity of 
household production materials, and the input of green 
food production by farmers is the result of measuring 
the existing capital endowment of the household.  
As a labor-intensive industry, grain production requires 
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a large amount of labor. However, the current transfer  
of rural labor to cities and the rise in labor costs 
inevitably lead to a loss of production efficiency [16].  
In order to avoid the loss of production efficiency, 
farmers may use  large amounts of pesticides, fertilizers, 
and other inputs to ensure production efficiency,  
but this also causes pollution and loss of green 
production efficiency. Therefore, labor is an important 
factor affecting the efficiency of green food production 
[17]. Therefore, household characteristics are  
important factors affecting the efficiency of green food 
production.

Green Production Behavior

Green production behavior refers to a production 
method that reduces rural environmental pollution and 
efficiently utilizes resources while ensuring agricultural 
production capacity [17]. It mainly includes soil testing 
and fertilization, and the use of low-toxicity pesticides. 
Studies have found that carbon emissions from crops 
mainly come from the use of fertilizers, pesticides, and 
other agricultural inputs during agricultural production, 
and the use of fertilizers and pesticides by farmers 
affects the efficiency of agricultural green production 
[14]. The green production behavior of farmers affects 
the allocation of production materials by farmers.

Land Management Characteristics

Land management characteristics affect the 
allocation of production materials by farmers, thereby 
affecting the efficiency of green food production. 
According to the theory of economies of scale, land 
management scale and land fragmentation can affect 
the compatible development of the environment  
and economy [18]. Large-scale operations can improve 
the level of mechanized operations, have a substitution 
effect on labor, and also provide favorable conditions for 
the application of green food production technologies 
[19, 20]. According to the theory of property rights 
incentives, there are differences in the property rights 
attributes between transfer-in land and contracted 
land, which also lead to differences in land inputs  
[21, 22]. Because the transfer-in party pursues 
maximizing benefits on the transferred land, it may 
increase the input of resources such as fertilizers 
and pesticides, resulting in a large amount of carbon 
emissions and pollution, causing soil compaction, 
degradation, etc. [23].

Data Sources

The data for this study were sourced from the “China 
Land Economic Survey (CLES).” This study chose to 
combine data from the years 2020 and 2021 to create 
a mixed cross-sectional dataset. The CLES survey 
at the plot level collected information on the “largest 
plot” from the interviewed households, including 

basic information such as plot yield and area, which 
can effectively meet the needs of this study. After data 
processing and screening, a total of 1,810 plot samples 
were obtained.

Model Setting

Three-Stage DEA

The three-stage DEA model is able to remove 
environmental and stochastic perturbations and more 
accurately measure productivity efficiency [24]. The 
three-stage DEA model can more accurately measure 
productivity efficiency by eliminating environmental 
and random factors. The process is as follows:

Stage 1: Traditional DEA modeling.
Stage 2: SFA modeling. SFA regression was used to 

exclude the effects of external environmental factors and 
random disturbances.

Stage 3: Adjusted DEA model. The inputs and 
outputs adjusted by the second stage are used to measure 
the green production efficiency of food again using  
the DEA model.

RF Random Forest Model

The Random Forest (RF) model is an ensemble 
machine learning algorithm proposed by Breiman 
[25, 26]. It consists of multiple decision tree models. 
Compared to individual decision tree models, Random 
Forest adopts an ensemble learning approach, where 
predictions are made based on the predictions of 
numerous decision trees. This enhances the fitting 
performance and stability of the Random Forest model 
[27, 28]. Due to its ability to process each decision tree 
in parallel, Random Forest has high computational 
efficiency when dealing with large-scale datasets. 
Random Forest provides the ranking of feature 
importance, which helps understand which features 
contribute the most to the prediction results. Random 
Forest has good robustness against missing values and 
outliers, and it can handle incomplete or noisy data. 
Compared to traditional linear regression models, 
Random Forest has non-parametric advantages, as it can 
output non-linear relationships between data and handle 
multicollinearity well. Therefore, it is widely used as an 
important machine learning technique [29, 30].

ISM-MICMAC Model

The Interpretive Structural Modeling (ISM) is 
a model that establishes the relationships between 
different factors based on theoretical analysis and 
expert consultation. It utilizes MATLAB software to 
hierarchically and categorically analyze the factors, 
thereby exploring the hierarchical relationships among 
them [31, 32]. 
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Variable Settings and Descriptions

Three-Stage DEA

The evaluation and research on grain production 
efficiency are conducted from the perspective of inputs 
and outputs. Therefore, the constructed grain production 
efficiency evaluation indicator system mainly includes 
two aspects: input indicators and output indicators. 
The input indicators include land input, labor input, 
and capital input. Land input is measured by the area; 
labor input is measured by the number of self-employed 
workers in the households; capital input includes 
expenses such as pesticides, seed fees, and machinery 
operation fees. The output indicators are divided into 
two parts: expected output and non-expected output. 
The expected output is primarily measured by the total 
rice yield of the plot, while the non-expected output is 
mainly measured by carbon emissions. The coefficient 
values for various carbon emission indicators can 
be found in the research by Gai Zhaoxue and Li Bo 
[12, 13]. Environmental variables include the plot’s 
disaster situation, soil condition, and fertility [14].  
The explanation of each variable indicator is shown in 
Table 1.

RF Variable Construction

This study uses the Random Forest (RF) model 
to examine the factors influencing grain production 
efficiency. The dependent variable in the model is the 
grain production efficiency, which is calculated using 
the three-stage DEA method. However, since the grain 
production efficiency variable is a continuous variable 
with values ranging from 0 to 1, when constructing the 
decision tree, if the dependent variable is continuous, the 
decision tree will become a regression tree. In regression 
trees, impurity is measured using mean squared error, 
while in decision trees, impurity is measured using 
the Gini coefficient and information entropy. In simple 
terms, the closer a decision tree is to the top root node, 
the greater the decrease in impurity. From an economic 
perspective, the root node has the greatest impact on the 
dependent variable. Therefore, in this study, a decision 
tree is used to form a random forest, dividing grain 
production efficiency into two groups: high efficiency 
and low efficiency. Based on the current input factors 
related to grain production, this study divides the 
factors influencing grain production efficiency into five 
parts. The first part is village characteristics, including 
accessibility (Tra) and economic conditions (Eco). The 
second part is household decision-maker characteristics, 
including gender (Gen), age (Age), education level 
(Edu), and health condition (Hea). The third part is 
household characteristics, including labor proportion 
(Lab), proportion of agricultural labor force (ALab), and 
number of owned agricultural machinery (Mac). The 
fourth part is green production behavior characteristics, 
including plastic film recycling (Fil), pesticide use 

(Pes), and fertilizer use (Fer). The fifth part is plot 
characteristics, including plot area (Are), whether it is 
contracted land (Con), and degree of land fragmentation 
(Fra).

Empirical Results and Analysis

Three-Stage DEA Results

Stage 1: Traditional DEA Rice Food 
Green Production Efficiency

In the first stage, the DEA model was primarily used 
to evaluate the grain production efficiency of 1810 plots, 
and the measurement results are presented in Table 2. 
The measurement results from the first stage show that 
the average ecological comprehensive efficiency of 
grain production for these 1810 plots is 0.758, indicating 
that there is still 24.2% room for improvement. There 
are 1100 plots, accounting for 60.77% of the total, with 
grain production efficiency above 0.9. Among them, 
20 plots have a grain production efficiency value of 1, 
reaching the optimal efficiency and accounting for 1.1% 
of the total.

Stage 2: The Influence of Environmental Factors 
on the Green Production Efficiency

Since the first stage did not eliminate the influence 
of environmental factors and random disturbances, 
it could not accurately reflect the grain production 
efficiency of each farmer. In the second stage, the slack 
values of the input variables from the first stage were 
used as the dependent variable, while environmental 
factors such as disaster situation, soil, and fertility 
were used as explanatory variables. With the help 
of Frontier 4.1 software, the SFA regression results 
were obtained and presented in Table 3. From Table 3,  
it can be observed that the slack variables (γ values) for 
land input, labor input, and capital input approach 1. 
Furthermore, through a significance test at the 1% level, 
it indicates that the selection of environmental variables 
is reasonable. The LR one-tailed test for all three 
environmental variables also passed the 1% significance 
test, indicating that eliminating the environmental 
variables is both reasonable and necessary.

Stage 3: Adjusting the Green Production 
Efficiency Measurement Results

After adjusting the input variables based on the 
SFA regression results from the second stage and 
incorporating the original output variables into the DEA 
model, the adjusted green food production efficiency is 
obtained and presented in Table 4. The average green 
food production efficiency has increased after adjusting 
for environmental and random disturbances. The number 
of farms with optimal efficiency has also increased,  
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with 31 plots achieving an efficiency value of 1, 
accounting for 1.71% of the total. Furthermore, 62.7% 
of the farms have an efficiency value above 0.9. This 
indicates that the presence of external environmental 
factors and random disturbances significantly 
underestimated the green food production efficiency of 
these plots.

RF Random Forest Results

RF Random Forest Construction

From the above results, it can be observed that 
only 31 production units are located on the frontier, 
accounting for 1.7% of the total. The majority of 
production units do not lie on the frontier, which leads 
to a severe issue of imbalanced data in the obtained 
dataset. This imbalance can greatly interfere with 
the learning process of the random forest algorithm. 
Therefore, determining whether a production unit is 
located on the frontier cannot be used as a classification 
label for machine learning [16].

Additionally, the purpose of analyzing the factors 
influencing the green food production efficiency of 
each decision unit is to promote energy conservation, 
reduce consumption, improve quality, and increase 
efficiency. However, even if the input-output situation 
is improved, the majority of farmers find it difficult 
to reach the production frontier due to their resource 
endowments and technological conditions. This will 
reduce the actual value of the random forest model.
Taking into account the characteristics of the dataset, 
in the construction of the random forest model, farmers 
with a production efficiency greater than 0.9 in the third 
stage are considered as high-efficiency samples, while 
the remaining samples are considered as low-efficiency 
samples.

During the construction of the random forest model, 
considering the dataset characteristics, the model’s 
predictive results are validated using cross-validation 
to determine the four parameters that have the greatest 
impact on the model’s complexity. This helps in 
determining the optimal random forest model. In this 
study, the optimal combination of hyperparameters 

Productivity interval Frequency Percentage

[0-0.1) 212 11.71%

[0.1-0.2) 1 0.06%

[0.2-0.3) 3 0.17%

[0.3-0.4) 18 0.99%

[0.4-0.5) 54 2.98%

[0.5-0.6) 78 4.31%

[0.6-0.7) 83 4.59%

[0.7-0.8) 100 5.52%

[0.8-0.9) 141 7.79%

[0.9-1) 1100 60.77%

1 20 1.10%

Average value 0.758

Table 2. Results of the first stage of the green production 
efficiency measurement of grain.

Table 4. Results of the third stage of the green production 
efficiency measurement.

Table 3. Estimation results of the second stage based on SFA.

Variables Land input Labor input Capital Investment

Constant term 1.57*** -22.87*** -35423.33***

Disaster situation -0.12*** 0.09* 1838.47***

Soil 0.20*** 0.28** -202.26***

 Fertility 0.30*** 7.22*** -2290.05***

σ2 9.90E-04*** 1.20E-02*** 1.55E-02***

γ 0.99999*** 0.99999*** 0.99999***

LR one-sided test 1147.43 779.08 485.72

Productivity interval Frequency Percentage

[0-0.1) 212 11.71%

[0.1-0.2) 1 0.06%

[0.2-0.3) 9 0.5%

[0.3-0.4) 31 1.71%

[0.4-0.5) 31 1.71%

[0.5-0.6) 66 3.65%

[0.6-0.7) 80 4.42%

[0.7-0.8) 98 5.41%

[0.8-0.9) 147 8.12%

[0.9-1) 1104 60.99%

1 31 1.71%

Average value 0.762
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for the random forest model was determined  
as n_estimators = 40, max_depth = 3, min_samples_
leaf = 13, and max_features = 4. The specific parameter 
tuning process can be referred to in Fig. 1.

Importance Analysis of Full Sample Characteristics

Fig. 2 presents the ranking of feature importance for 
the entire sample, with the horizontal axis representing 
the level of importance score, which is the average 
decrease in mean squared error of the random forest 
model after including that feature. It can be observed 
that the first four variables, namely Contracting of 
Land (Con), Fragmentation of Land (Fra), Accessibility 
of Transportation (Tra), and Plot Area (Are), result in 
significantly higher decreases in mean squared error 
compared to other variables. Firstly, under the stable 
land tenure situation, the remaining claim rights are 
explicitly and long-term allocated to contracted farmers, 
which provides economic incentives for farmers to 
pursue surplus profits in agricultural production [33, 34]. 
There is a coupling relationship between the stability 
of land tenure and the pursuit of green production 
efficiency by farmers. As contracted land parcels have 
long-term and stable operating rights and remaining 
claim rights for farmers, they value the long-term 
returns and sustainable development options of these 
parcels. Therefore, farmers choose green production 
technologies that are beneficial for the long-term 
sustainable development of land, aiming to improve 
green production efficiency and obtain surplus profits. 
For instance, if farmers become aware that excessive 

fertilizer application may lead to soil compaction and 
affect future land output, they may choose to use organic 
fertilizers. Regarding incoming land parcels, farmers 
have short-term and uncertain operating rights and 
remaining claim rights. Therefore, their objective is to 
maximize profits within the contracting period, without 
much concern for the sustainability of production, 
which leads to a decrease in green production efficiency. 
Secondly, intensive and large-scale land use can reduce 
the input of resources and energy per unit area [35]. The 
larger the plot area and the lower the fragmentation of 
cultivated land, the more scale benefits can be realized. 
When farmers manage fragmented land, they need 
to move between different plots, resulting in time and 
labor waste. To compensate for this waste, farmers 
may increase the input of resources and energy per unit 
area to maintain production efficiency but neglect the 
green production efficiency of food production. Finally, 
ensuring transportation accessibility facilitates the input 
of large-scale agricultural machinery and promotes 
the improvement of food production efficiency [36]. 
Transportation accessibility also provides conditions for 
the transportation of agricultural production materials 
and the handling of crop residues, thereby enhancing 
green production efficiency in food production.

Random Forest Robustness Test

To further validate the explanatory power of random 
forest, this study employed multiple linear regression 
models and a logistic regression model to examine 
the factors influencing green production efficiency in 

Fig. 1. Random forest model tuning process.
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food production. The results were compared with the 
estimates from the random forest model, as shown in 
Table 5. Specifically, significant factors (at the 10% 
level) that influence green production efficiency were 
selected from the OLS and logit models, and their 
rankings were determined based on the magnitude 
of regression coefficients. From the perspective of 
R-squared (R2), the OLS and logit models had similar R2 
values of 0.386 and 0.329, respectively, while the random 
forest model achieved a significantly higher R2 of 0.895, 
indicating that the random forest model has stronger 
explanatory power. In terms of rankings, the top four 
factors in the OLS and logit models were Con, ALab, 
Tra, and Pes, whereas the top four factors in the random 
forest model were Con, Fra, Tra, and Are. The variable 
“Contracting of Land” (Con) consistently ranked first in 
importance across all three models, and “Accessibility 
of Transportation” (Tra) consistently ranked third. This 
also suggests the robustness of the research findings. 
Due to the inclusion of multiple features, traditional 
estimation using statistical measures may face the 
problem of loss of degrees of freedom, leading to poorer 
significance of feature estimation coefficients. Random 
forest can effectively avoid the reduction of degrees of 
freedom and the issue of collinearity, thus providing 
more accurate feature importance rankings.

Food Green Production Efficiency Impact  
Path Analysis

In the previous analysis, the feature importance 
provided important guidance for further analyzing 
the pathways influencing green production efficiency 
in food production. Due to space constraints and for 
the convenience of analysis, this study only reports 
the top four features contributing to the improvement 
of green production efficiency: Contracting of Land 
(Con), Fragmentation of Land (Fra), Accessibility of 
Transportation (Tra), and Plot Area (Are). Fig. 3 displays 
the partial effects of these four features on ecological 
characteristics of food production, with the vertical axis 
representing the features affecting green production 
efficiency and the horizontal axis representing green 
production efficiency. The partial effects plot reflects 
the marginal impact of a feature change on green 
production efficiency while keeping other conditions 
constant, with higher slopes indicating higher marginal 
effects. The partial effects curve for Contracting of Land 
(Con) shows a stable slope of 1, indicating a positive 
correlation with green production efficiency. The partial 
effects curve for Fragmentation of Land (Fra) exhibits a 
turning point, with slopes close to 90 degrees between 0 
and 0.1, positive slopes between 0 and 0.3, and negative 
slopes between 0.3 and 2. This suggests that, overall, 
Fragmentation of Land is negatively correlated with 
green production efficiency. The partial effects curve for 
Accessibility of Transportation (Tra) shows a decreasing 
trend between 1 and 1.2, indicating an overall increasing 
trend in green production efficiency as transportation 
accessibility improves. The partial effects curve for Plot 
Area (Are) indicates that larger plot areas lead to higher 
green production efficiency within the range of 0 to 5. 
However, a decreasing trend is observed between 5 and 
30, indicating that larger plot areas are associated with 
lower green production efficiency.

ISM Model Construction

Constructing the Adjacency Matrix

Through random forest analysis, the importance 
ranking of factors influencing the green production 
efficiency of grain has been obtained. However, the 
hierarchical relationships between these factors cannot 
be determined solely based on random forest analysis. 
To provide reliable policy recommendations for 
improving green production efficiency, the ISM model 
was further employed to determine the hierarchical 
relationships among different factors. Based on the 
importance ranking, it was observed that the importance 
of plastic film recycling (Fil) is nearly zero. Therefore, 
plastic film recycling was excluded from the ISM model. 
The factors influencing green production efficiency 
were represented as Si (i = 1, 2, ..., n) and include land 
fragmentation (Fra), contracting status (Con), plot 
size (Are), fertilizer usage (Fer), pesticide usage (Pes), 

Fig. 2. Importance of features for full sample estimation.

Table 5. OLS, Logit and RF meter results.

Importance Ranking OLS Logit RF

1  Con Con Con

2 ALab  ALab Fra

3 Tra  Tra Tra

4  Pes  Pes  Are

R2 0.386 0.329 0.895

*Only the top four features are shown
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number of self-owned agricultural machinery (Mac), 
proportion of agricultural labor force (ALab), proportion 
of labor force (Lab), health condition (Hea), education 
level (Edu), age (Age), gender (Gen), economic condition 
(Eco), and accessibility (Tra). S0 represents green 
production efficiency. By consulting relevant experts 
and analyzing existing literature and theories, the 

relationships between these factors were determined. In 
this context, “V” represents the influence of a row factor 
i on a column factor j, “A” represents the influence of a 
column factor j on a row factor i, and “0” indicates no 
influence between the row factor i and column factor j. 
The reachability matrix can be found in Table 6.

Table 6. Reachable matrix.

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

S0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

S1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0

S2 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0

S3 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

S4 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

S5 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0

S6 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0

S7 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0

S8 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0

S9 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0

S10 1 0 0 0 1 0 1 1 0 0 1 0 0 0 0

S11 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0

S12 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

S13 1 1 0 0 1 0 1 1 0 0 0 0 0 1 0

S14 1 0 0 0 1 0 1 1 0 0 0 0 0 0 1

Fig. 3. Bias effect diagram of influencing factors.
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Constructing an Explanatory Structural Model

The hierarchical structure of the factors influencing 
the green production efficiency of food can be obtained 
according to the ISM hierarchical division table, which 
is detailed in Fig. 4.

Based on Fig. 4, the influencing factors can be 
divided into three categories: the first layer consists  
of direct factors, the second layer includes indirect 
factors, and the third and fourth layers represent deeper 
factors.

The direct influencing factors are fertilizer 
usage, pesticide usage, and the number of self-owned 
machinery. These factors directly affect the green 
production efficiency of grain, and it can be observed 
that these three factors primarily relate to material 
aspects. The indirect influencing factors primarily 
consist of three factors in the first layer. These factors 
indirectly affect the green production efficiency  
of grain by influencing the direct factors. The indirect 
factors include contracting status, plot size, and the 
proportion of agricultural labor force. The deep-level 
factors mainly comprise two layers, totaling eight 
factors. These factors are family-related factors, age, 
education level, gender, health condition, proportion of 
family labor force, land fragmentation degree, plot size, 
village accessibility, and economic condition. These 
factors have a more profound influence on the green 
production efficiency of grain.

Based on Fig. 4, we can observe five main causal 
paths:

“Contracting status → (Fertilizer usage, Pesticide 
usage, Number of self-owned machinery) → Green 

production efficiency of grain”: This path validates the 
influence of contracting status mentioned in the random 
forest feature importance analysis. Farmers who have 
contracted land are more likely to reduce the use of 
chemical fertilizers and pesticides due to long-term 
sustainable production considerations.

“Land fragmentation degree → Plot size → 
(Fertilizer usage, Pesticide usage, Number of self-owned 
machinery) → Green production efficiency of grain”: 
This path validates the impact of land fragmentation 
degree and plot size mentioned in the random forest 
feature importance analysis. These factors influence 
farmers’ input into their land, which in turn affects their 
operational efficiency. Farmers may excessively invest in 
resources such as fertilizers and pesticides to improve 
efficiency, leading to a decrease in green production 
efficiency.

“Proportion of family labor force → (Plot size, 
Proportion of agricultural labor force) → (Fertilizer 
usage, Pesticide usage, Number of self-owned 
machinery) → Green production efficiency of grain”: 
The proportion of family labor force influences  
the proportion of agricultural labor force in the family. 
As grain production is a labor-intensive industry,  
it requires a significant amount of labor. Insufficient 
labor force may lead to excessive investment in 
resources such as fertilizers and pesticides by farmers, 
resulting in a decrease in green production efficiency.

“Economic condition → Village accessibility → 
(Plot size, Proportion of agricultural labor force) → 
(Fertilizer usage, Pesticide usage, Number of self-
owned machinery) → Green production efficiency of 
grain”: The local economic condition influences village 

Fig. 4. Explanatory structural model of factors influencing green production efficiency of food.
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accessibility, which affects mechanized operations  
and the input and output of materials in agriculture.  
On one hand, good village accessibility facilitates grain 
sales and the externalization of by-products such as 
straw, reducing carbon emissions from straw burning. 
On the other hand, village accessibility contributes 
to cross-regional agricultural machinery operations 
and facilitates farmers’ service purchasing, avoiding 
redundant machinery purchases within the same region, 
which would waste resources and increase carbon 
emissions.

“(Age, Education level, Gender, Health condition) → 
(Fertilizer usage, Pesticide usage, Number of self-owned 
machinery) → Green production efficiency of grain”: 
This path is related to the perceptions of household 
decision-makers. Decision-makers from different 
backgrounds may make different decisions, influencing 
the material inputs of households in grain production.

These five causal paths share the common 
characteristic of influencing the usage of fertilizers, 
pesticides, and the number of self-owned machinery, 
thereby affecting the green production efficiency of 
grain.

Discussion

This research also has its limitations. Firstly, the 
study utilizes data from the China Land Economics 
Survey (CLES), which focuses on the Jiangsu province 
– a region known for its strong economy, favorable 
geographical location, and being a major rice production 
area in China. Further investigation and validation are 
required to determine whether the findings of this study 
are applicable to economically disadvantaged, non-rice-
producing, and remote areas. Secondly, the data used 
in this study primarily pertains to rice production, and 
there may be differences in the production processes of 
other cereal crops. Further exploration and validation are 
needed to determine the applicability of the conclusions 
to other grain crops.

In conclusion, this study provides empirical evidence 
for the factors influencing green food production 
efficiency. However, it is important to note that this 
research is preliminary and further in-depth analysis  
is necessary. The next steps of the research can be 
outlined as follows: Firstly, broaden the research  
scope to include the Chinese region and assess the 
applicability of the research conclusions within this 
context. Secondly, extend the research focus to include 
grains such as wheat and examine the variations  
among different grain crops. Lastly, perform regression 
analysis on significant factors that influence the 
efficiency of green food production to derive more 
robust conclusions.

Conclusion and Policy Recommendations

Conclusion

This study conducted research on the factors 
influencing green food production efficiency through  
a combined modeling approach of three-stage DEA-RF-
ISM based on CLES data. The following conclusions 
were drawn:

(1) After excluding the influence of environmental 
factors, the efficiency values changed, indicating that 
green food production efficiency is affected by external 
environmental factors. After excluding environmental 
factors, the average green production efficiency was 
found to be 0.762, which still remains relatively low, 
indicating significant room for improvement.

(2) By constructing the Random Forest model, 
the importance ranking of features was obtained 
to identify the factors that have the greatest impact 
on green food production efficiency. The results 
of the partial effect analysis indicated that the top 
four factors with the highest impact on ecological 
production efficiency are contracting status (Con), land 
fragmentation (Fra), transportation accessibility (Tra), 
and land area (Are). Among these factors, contracting 
status and transportation accessibility have a positive 
impact on green food production efficiency, while land 
fragmentation and land area have an overall negative 
impact.

(3) The ISM analysis revealed that the relationships 
among factors affecting green food production efficiency 
can be divided into four levels and three layers, with 
five propagation paths identified. These five propagation 
paths have a common characteristic of influencing 
the use of fertilizers, pesticides, and the number of 
self-owned machinery, thereby affecting green food 
production efficiency.

Recommendations

(1) Encourage farmers to engage in land 
consolidation to reduce land fragmentation and achieve 
scale-based operations. However, it should be noted 
that a larger land area is not always better. Reasonable 
land area and layout can promote the integration of 
agricultural production scale and green production, 
thereby improving green food production efficiency.

(2) Guide farmers to make reasonable inputs of 
production resources and avoid excessive input of 
production resources per unit area, which may lead to 
a decrease in green food production efficiency. At the 
same time, promote the improvement of agricultural 
machinery, fertilizers, and other production resources 
to reduce carbon emissions and improve green food 
production efficiency.

(3) Improve agricultural infrastructure and 
strengthen the construction of agricultural transportation 
roads. This provides the necessary conditions for 
mechanization in food production and improves  
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the conditions for agricultural product output and input 
of agricultural resources, thereby enhancing green food 
production efficiency.
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