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Abstract

Reducing and sequestering agricultural carbon is a crucial measure for achieving carbon neutrality 
and carbon peak, as well as an integral component of agricultural modernization. This study uses 
the super-efficiency Slack-based measure-Data envelopement analysis (SBM-DEA) and Exploratory 
spatial data analysis (ESDA) models to examine the spatiotemporal differentiation characteristics  
of agricultural ecological efficiency (AEE) in 38 districts and counties of Chongqing. The results 
indicate that the CRR-DEA model disregards the impact of undesirable output factors and overestimates 
the actual utilization of agricultural resources, whereas the super-efficiency SBM-DEA model is 
more consistent with the actual agricultural production process. Chongqing’s AEE was at a high level  
of efficiency and the distribution of spatial pattern is uneven, displaying a development pattern  
of “The urban agglomeration in the Three Gorges Reservoir area of Northeast Chongqing (UTC)>Main 
urban metropolitan area (MUA) > Wuling Mountain urban agglomeration in southeast Chongqing 
(WUC)”, and there is a significant agglomeration characteristic among various districts and counties. 
The High-High (H-H) agglomeration is primarily concentrated in the central urban area and  
the Low-Low (L-L) agglomeration area is primarily located in the eastern portion of UTC. Consequently, 
all regions in Chongqing should combine their own agricultural development characteristics, maximize 
their strengths, compensate for their weaknesses, and thereby enhance the AEE. 
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Introduction

Since China’s reform and opening up in 1978, 
agriculture has advanced quickly and reached a new 
level of production capacity, ensuring both national 
stability and food security. China’s total grain production 
will expand by 1.24 times over 1978 to 682.8475 million 
tons in 2021, while the value of all agricultural output 
will rise by 69.1 times over 1978 to 783.951 billion yuan. 
However, the agricultural economy’s rapid expansion 
has resulted in a high consumption of chemicals like 
fertilizers, pesticides, agricultural films, and other 
chemicals, which has led to a decline in the quality 
of cultivated land [1], excessive agricultural carbon 
emissions (ACE) [2], agricultural non-point source 
pollution (ANSP) [3], and other issues. Additionally, 
excessive agricultural resource consumption, ecological 
environment damage, and other issues have also 
become more prominent, which seriously restricts the 
development level of China’s agriculture [4]. China 
is the top agricultural producer and emitter of carbon, 
and its ACE is significantly greater than the average 
for the world [2]. The “dual carbon” target, which 
calls for reaching carbon neutrality by 2060 and the 
carbon peak by 2030, presents a significant opportunity 
for China’s agricultural production to reduce carbon 
emissions [5]. Major plans were made for reducing 
carbon emissions in the planting and breeding industries 
in the “Implementation Plan for Carbon Emission 
Reduction and Sequestration in Agriculture and Rural 
Areas” released by the Ministry of Agriculture and 
Rural Affairs and the National Development and Reform 
Commission in 2022; at the same time, the report of the 
20th National Congress will also raise the construction 
of agricultural power to an unprecedented height, which 
means the agricultural production mode needs to make 
qualitative changes. In recent years, Chongqing has 
released the 14th Five-Year Plan (FYP) for Promoting 
Agricultural and Rural Modernization (2021-2025) and 
the 14th FYP for Agricultural Ecological Environment 
Protection and Agricultural Waste Resource Utilization 
(2021-2025), which have given the development of 
Chongqing’s agricultural economy a new direction. 
Even though Chongqing has made enormous strides in 
the economic development of agriculture, agricultural 
environmental pollution is still a major concern 
today. Therefore, in light of the “dual carbon” target, 
boosting AEE is a viable option for agricultural green 
transformation and upgrading and a crucial means of 
achieving ACE reduction and controlling ANSP [6].

AEE is a specialized application of the theory of 
ecological efficiency within the agricultural domain. 
It investigates the correlation between agricultural 
inputs and outputs, emphasizing the need to minimize 
agricultural production inputs and ecological 
environment pollution in order to attain optimal output 
levels [7, 8]. Regarding the investigation of AEE, both 
local and international experts mostly concentrate  
on the following three dimensions: The primary focus  

of research on AEE measurement includes the utilization 
of many models, including the Analytic Hierarchy 
Process (AHP) [9], the integration of emergency and 
life cycle methods [10], and the super-efficiency SBM 
model [11, 12]. The second aspect of the study focuses 
on the examination of the spatiotemporal evolution 
characteristics of AEE. This investigation primarily 
employs analytical techniques such as kernel density 
estimation analysis [13], a spatial autocorrelation 
model [14, 15], and the building of a spatial Markov 
probability transfer matrix [16]. The third aspect 
pertains to the examination of the many components 
that exert influence on AEE. Certain scholars argue 
that various factors such as the per-capita net income 
of farmers, investment in agricultural fixed assets, 
educational attainment of labor, industrial structure, 
effective irrigation area, sown area per labor, planting 
structure, urbanization rate, and agricultural machinery 
density have the potential to either facilitate or impede 
the enhancement of agricultural efficiency [17, 18]. In 
contrast to prior investigations, this study makes three 
primary contributions. Firstly, in terms of research 
scope, this paper examines the AEE of Chongqing 
at the micro-county level, as opposed to the national  
[19-22], provincial [23-25], or regional level [26-28]. 
This approach offers a novel perspective for scholars 
to explore the matter of agricultural green development 
within a specific region in isolation. Secondly, in terms 
of the research concept, this paper integrates the “dual 
carbon” objective and incorporates the notion of low 
carbon in agriculture into the assessment framework 
of AEE. It also considers the ACE index, which is 
often overlooked, as an undesirable output in order to 
enhance the accuracy of the calculations. This approach 
is expected to facilitate the effective implementation 
of government policies and initiatives by providing 
more precise results for relevant stakeholders. Thirdly, 
in terms of research methods, this study employs 
the super-efficiency SBM-ESDA model as a research 
method to examine the AEE in district and county of 
Chongqing. The model is used to effectively differentiate 
and compare the evaluation units with an efficiency 
value of 1. Furthermore, it analyses the spatiotemporal 
dynamic evolution characteristics of Chongqing’s AEE 
and its influence on the surrounding regions. The 
findings of this study offer theoretical support for the 
subsequent agricultural transformation, upgrading, and 
development in Chongqing. Hence, this study focuses 
on 38 districts and counties in Chongqing from 2010 to 
2021 as the designated research area. The study employs 
ACE and ANSP as undesirable outputs and utilizes the 
super-efficiency SBM-DEA model and ESDA to assess 
the AEE of each district and county in Chongqing. 
The analysis of the spatiotemporal dynamic evolution 
characteristics of AEE is beneficial for enhancing AEE, 
fostering agricultural green development, and holding 
significant implications for achieving the “double 
carbon” target [29, 30]. Simultaneously, it also elucidates 
the trajectory for agricultural development challenges 
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in expeditiously progressing regions both domestically 
and internationally. The aims of this study are as 
follows: (1) The evaluation index system of AEE was 
established using the super-efficiency SBM-DEA model, 
and the AEE of each district and county in Chongqing 
was assessed. (2) The ESDA model was employed to 
analyze the spatial and temporal evolution patterns of 
AEE in each district and county of Chongqing. (3) By 
integrating the specific characteristics of each district 
and county in Chongqing and the spatiotemporal 
evolution patterns of AEE, this study proposes 
optimization recommendations to enhance AEE.

Materials and Methods 

The Study Area

Chongqing, situated in the southwestern region of 
China (105°11’-110°11’E, 28°10’-32°13’ N), is recognized 
as one of the four municipalities directly administered by 
the Central Government of China. The urban area spans 
a total land area of 82,402 square kilometers, serving 
a significant function in facilitating the development 
of the western region. Furthermore, it holds a crucial 
position as a connecting hub between the “belt and road” 
initiative and the Yangtze River economic belt. The 
topography of the region exhibits a steady decline from 
the southern Yangtze River valley towards the north. In 
the northwest and central areas, the landscape is mostly 
characterized by hills and low mountainous features. 
Conversely, the southeastern region, particularly around 
the Daba and Wuling Mountain ranges, showcases a 
greater prevalence of sloping land. The terrain of the 
region exhibits higher elevations in the southeastern and 
northeastern areas, while lower elevations are observed 

in the central and western portions. The Chongqing 
region comprises a mountainous terrain covering 
approximately 76% of its total area, while hills account 
for approximately 22% of the region. The remaining 
2% is occupied by a river valley. The climate in this 
region is characterized as a subtropical monsoon humid 
climate, exhibiting warm temperatures during winter 
and early spring, hot temperatures during summer, 
and cold temperatures during autumn. This climate 
pattern is further distinguished by the presence of four 
distinct seasons. The land use categories in Chongqing 
can be broadly classified into eight categories: artificial 
surface, woodland, water body, wetland, shrub land, 
cultivated land, grassland, and bare land. Among 
these, cultivated land mostly serves the purpose of 
agricultural production. Chongqing’s topography and 
climate pose challenges to its agricultural productivity, 
resulting in limited grain output and obstacles to 
large-scale agricultural operations inside the province. 
Nevertheless, several cash crops, such as potatoes, 
citrus, and rapeseed, hold a significant share of China’s 
agricultural landscape (Fig. 1).

Method Setting

Super-Efficiency SBM-DEA Model

Data Envelopment Analysis (DEA) is a non-
parametric technique used for measuring efficiency.  
It primarily examines various input and output 
indicators, calculates the optimal input-output weights 
to determine the most efficient production route, and 
subsequently applies linear programming to each 
decision-making unit [12]. Tone incorporated the slack 
variable into the objective function to enhance the 
differentIation of efficiency among decision-making 

Fig. 1.  Distribution of land-use types in Chongqing.
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units (DMU) and assess their efficiency values in the 
presence of undesirable outputs [31-34]. This approach 
enables the optimization of both profit maximization 
and the improvement of the benefit ratio structure. 
The model being referred to is the non-radial super-
efficiency DEA model, specifically the Slacks-Based 
Measure (SBM) model. The mathematical expression is 
as follows:

          (1)

Where, ρ* is the efficiency value;  x,y are input 
and output numbers, respectively; i,r are input and 
output DMU, respectively; Si

–,Si
+ are input and output 

relaxation variables, respectively; λ is the weight. If ρ*≥1, 
it is relatively efficient; If ρ*<1, there is an efficiency loss 
and the ratio of input to output needs to be optimized.

Exploratory Spatial Data Analysis 
(ESDA)

ESDA is a crucial study technique within the field of 
spatial econometrics. Its primary objective is to uncover 
and analyze the occurrence of geographical dependency, 
spatial correlation, and spatial autocorrelation pertaining 
to specific features within neighboring geographic areas. 
The analytical methods primarily consist of two distinct 
approaches: Global spatial autocorrelation analysis 
(GSA) and Local spatial autocorrelation analysis (LSA). 
The GSA primarily focuses on examining the level of 
correlation and heterogeneity of a specific property 
across neighboring or similar geographic areas. This is 
often quantified using the widely utilized global Moran’s 
I index [35-37]. The formula for calculating this index is 
as follows: 

       (2)

Where, I is the global Moran’s I index, n is the 
number of space units, Yi and Yj are the observed values 
of i space units and j space units, respectively, and Wij 
is the space weight matrix (If the spaces are adjacent, it 
is 1; if the spaces are not adjacent, it is 0). The observed 

value S2 is the variance and the observed value Y̅  is the 
mean.

The LSA is the examination of the degree of 
correlation between attributes of local spatial units or 
the same attributes of neighboring local spatial units 
within a given region. The Moran scatter plot and the 
Local Indicators of Spatial Association (LISA) test are 
frequently employed in academic research and analysis. 
The formula for the local Moran’s I index [38, 39] is as 
follows:

Ii is the local Moran’s I index, m is the number of 
spatial units, Xi and Xj are the attribute values of i-space 
units and j-space units, respectively, Wij is the spatial 
weight matrix, and X̅  is the mean.

Data Sources

The land-use types data for the study area primarily 
originated from Globeland 30 (http://www.globall and 
cover.com/ (accessed on 2 August, 2023)). The social 
and economic data were predominantly obtained from 
the 2011–2022 Chongqing Statistical Yearbook and the 
China County Statistical Yearbook. In instances where 
specific data points were missing, an interpolation 
method was employed to estimate their values. The 
analysis was conducted based on the five levels of AEE 
in different districts and counties of Chongqing, as 
presented in Table 1 of the research findings by ZHANG 
et al. [17].

Calculation of Agricultural Eco-Efficiency

In order to employ the super-efficiency SBM-DEA 
model for the purpose of assessing the AEE of each 
district and county in Chongqing, it becomes imperative 
to carefully choose appropriate input and output 
indicators. The AEE index system (Table 2) has been 
chosen based on its representativeness and accessibility 
of indicators.

The selection of input indicators in this study is 
mostly based on the research conducted by Coluccia 
[40] and Pang [13] et al. These indicators encompass 
several factors such as labor, capital, land, fertilizer, 
pesticides, agricultural film, irrigation, and machinery. 
The measurements encompassed a range of variables, 
including the number of agricultural employees (ten 
thousand individuals), rural electricity consumption (ten 
thousand kW·h), total area of crop cultivation (thousand 
hm2), quantity of fertilizer applied (t), quantity of 
pesticides applied (t), quantity of agricultural film used 
(t), extent of effective irrigation area (thousand hm2), 
and total power of agricultural machinery (kW). It is 
important to highlight that the focus of this study is 
on the specific sector of the planting industry within 
agriculture. Therefore, the calculation of the number 
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originating from different carbon sources, Ti represents 
the quantity of each carbon emission source, δi and 
represents the emission coefficient associated with 
each carbon emission source [43]. Referring to the 
study, six distinct categories of carbon emission 
sources were identified, both direct and indirect. 
These categories encompass chemical fertiliser, 
pesticide usage, agricultural film application, diesel 
fuel consumption, agricultural irrigation practices,  
and tillage methods. The emission coefficients associated 
with the respective quantities are 0.8956 kg/kg, 
4.9341 kg/kg, 5.18 kg/kg, 0.5927 kg/kg, 25 kg/hm2, and 
312.6 kg/km2. The formula for estimating ANSP is: 
EUA = Σi=1

n PEiQi, where EUA represents the amount 
of agricultural pollution discharged, PEi represents the 
output of each agricultural non-point source pollutant. 
Qi represents the pollutant discharge coefficient of each 
pollutant, which is derived by evaluating the pollution 
production rate and loss rate associated with each 
pollution source [42]. This article primarily focuses 
on agricultural non-point source pollutants, which 
encompass fertiliser, pesticides, agricultural film, crop 
straw, and rural living.

of agricultural employees is derived by multiplying the 
number of employees in the primary industry by the 
ratio of the total agricultural output value to the total 
output value of agriculture, forestry, animal husbandry, 
and fishery.

The super-efficiency SBM-DEA model incorporates 
both the desired output and the undesirable output 
in the output index. The desired output primarily 
encompasses the total agricultural output value and 
the agricultural carbon sink. Some scholars perceive 
the total agricultural output value solely as the desired 
output [31-33], whereas others consider both types as the 
desired output [41]. The total agricultural output value 
(ten thousand yuan) was chosen as the desired output 
in this study. On one hand, it is worth noting that the 
quantification of the total agricultural output value is 
relatively easy, but obtaining data on the agricultural 
carbon sink in each district and county of Chongqing 
from 2010 to 2021 presents challenges, and on the other 
hand, the total agricultural output value encompassed 
a broader range. The undesirable output is quantified 
using the carbon emissions from agricultural land  
(t) and the quantity of ANSP (t) [42], the formula for 
estimating carbon emissions from agricultural land 
is: E = ΣEi = ΣTiδi, where E represents agricultural 
carbon emissions, Ei represents the carbon emissions 

Table 1. The standard for classifying efficiency levels.

Levels Complete efficiency High efficiency Medium efficiency Low efficiency Inefficiency

Range of values TE 1 0.8≤TE<1 0.6≤TE<0.8 0.4≤TE<0.6 TE<0.4

TE stands for comprehensive technical efficiency.

Table 2. Evaluation index system of AEE.

First-level 
indicators

Second-level 
indicators Third-level indicators Indicator variables

Input Resource 
consumption

Labor input Agricultural employees (ten thousand)

Capital input Rural electricity consumption
(ten thousand kW·h)

Land input Total area of crop cultivation
(thousand hm2)

Fertilizer input Quantity of fertilizer applied (t)

Pesticide input Quantity of pesticides applied (t)

Agricultural film input Quantity of agricultural film applied (t)

Irrigation input Effective irrigation area (thousand hm2)

Machinery input Total power of agricultural machinery (kW)

Output

Desirable output Total agricultural output value Total agricultural output value
(ten thousand yuan)

Undesirable output

Agricultural carbon emissions 
(ACE) Agricultural land carbon emissions (t)

Agricultural non-point source 
pollution (ANSP) Quantity of agricultural non-point source pollution (t)
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Results and Discussion

Temporal Evolution Analysis of AEE

Based on the DEA model theory, the AEE values 
of Chongqing and its 38 districts and counties were 
computed using the MAXDEA software. Two models 
were employed: the CCR-DEA model, which did not 
account for the undesirable output, and the SBM-DEA 
model, which did consider the undesirable output. The 
comprehensive efficiency value of the entire city can be 
observed in Fig. 2. In contrast, the analysis reveals that 
the super-efficiency SBM-DEA model yields a lower 
estimation of AEE compared to the efficiency value 
obtained from the CCR-DEA model. This discrepancy 
suggests that the CCR-DEA model tends to overestimate 
the true utilization of agricultural resources while 
neglecting the consideration of undesirable output 
factors such as ACE and ANSP. Hence, the utilization 
of the super-efficiency SBM-DEA model enables a more 
accurate representation of the actual efficiency value.

Temporal Evolution Analysis of AEE at City-Level

The data shown in Fig. 2 illustrates that the AEE of 
Chongqing has exhibited a consistent fluctuation around 
0.8 between 2010 and 2021. This observation suggests 
that there remains significant potential for enhancing 
the AEE of Chongqing. Based on the analysis of  
Table 3, it can be observed that the efficiency grade of 
the 38 districts and counties in Chongqing from 2010 
to 2021 is characterized by a prevalence of districts and 
counties exhibiting complete efficiency, low efficiency, 
and inefficiency. Conversely, the occurrence of districts 
and counties demonstrating high efficiency is limited 
to a range of 0-3 throughout the specified period. 
Furthermore, the number of districts and counties 
displaying medium efficiency remained below 5 for 
the majority of the years under consideration. While 

the count of districts and counties exhibiting complete 
efficiency experienced a rise from 10 in 2010 to 16 
in 2021, the count of districts and counties with low 
efficiency remained relatively stable at approximately 
10. This situation has hindered the progress of the AEE 
in the region of Chongqing. From 2010 to 2021, the 
AEE in Chongqing exhibited a pattern characterized 
by an initial increase, followed by a decrease, and then  
a subsequent increase. Notably, over the period from 2016 
to 2019, the AEE saw significant fluctuations. However, 
despite these fluctuations, the overall trend of the AEE 
remained positive, indicating a gradual improvement in 
AEE over time. Since the initiation of China’s reform 
and opening up policy in 1978, the Communist Party 
of China (CPC) core Committee has placed significant 
emphasis on agricultural matters and has released  
a succession of No. 1 core documents to provide 
guidance for the advancement of China’s agricultural 
sector. However, there is a disparity in the level of 
agricultural modernization between Chongqing and 
certain other agriculturally developed regions.

Temporal Evolution Analysis of AEE 
at Regional Level

According to the administrative division of regions, 
Chongqing can be broadly categorized into “one 
district and two groups”. These include the main urban 
metropolitan area (MUA), the urban agglomeration 
in the Three Gorges Reservoir area of Northeast 
Chongqing (UTC), and the Wuling Mountain urban 
agglomeration in Southeast Chongqing (WUC).  
The MUA can be further divided into the central urban 
area and the main urban new area. The central urban 
area includes Yuzhong, Jiangbei, Nanan, Jiulongpo, 
Shapingba, Yubei, Dadukou, Beibei and Banan.  
The main urban new area encompasses Bishan, Jiangjin, 
Changshou, Nanchuan, Fuling, Yongchuan, Hechuan, 
Qijiang, Tongliang, Dazu, Rongchang, and Tongnan.  

Fig. 2.  AEE values calculated by different models in Chongqing.
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The UTC comprises Wanzhou, Kaizhou, Liangping, 
Fengdu, Dianjiang, Zhong, Yunyang, Fengjie, Wushan, 
Wuxi, and Chengkou. Lastly, the WUC includes 
Qianjiang, Wulong, Shizhu Tujia Autonomous, 
Pengshui Miao Tujia Autonomous, Youyang Tujia Miao 
Autonomous, and Xiushan Tujia Miao Autonomous. 
By examining the AEE data for the three areas (Fig. 3) 
throughout the period from 2020 to 2021, it is evident 
that Chongqing consistently exhibits the trend of 
UTC>MUA>WUC and central urban area>main urban 
new area. Furthermore, there is a steady convergence 
observed between WUC, UTC, and MUA, indicating 
that despite UTC’s relatively small agricultural scale, 
it has made notable advancements in ecological 
agriculture and resource utilization. The primary 
drivers of economic development in UTC are the green 
industry of “Three Gorges Manufacturing” and modern 
high-efficiency agriculture with distinct mountain 
characteristics known as “Three Gorges Farmers”. 
Significant emphasis is placed on the synchronised 
advancement of agricultural economic growth, 
ecological environmental preservation, and resource 
conservation. Furthermore, there is an increased 
emphasis on agricultural environmental protection 
awareness, stricter regulations on controlling ANSP, and 

a greater promotion of emission reduction and carbon 
reduction efforts. The economic development conditions 
of MUA exhibit favourable characteristics, with its 
resource endowment, planting structure, technological 
progress, and other elements demonstrating a clear 
superiority over other regions. The implementation 
and utilisation of advanced agricultural production 
technology and equipment, such as high-efficiency 
water-saving irrigation technology and drone seeding 
technology, have resulted in significant reductions in 
ACE and ANSP. The districts and counties within the 
jurisdiction of WUC exhibit a prominent presence of 
industries, cultural and tourism integration, but the 
agricultural farmland area with a high and stable yield, 
which is safeguarded against drought and flood, is 
limited. Conversely, there is a significant proportion of 
medium and low yield fields, indicating a weak capacity 
to withstand natural disasters. Additionally, the district 
faces severe ANSP, substantial pressure to maintain zero 
growth in pesticide and fertiliser usage, and the absence 
of an established agricultural green development 
system. The efficiency of utilising agricultural resources 
is currently suboptimal, necessitating a pressing need 
for the transformation and upgrading of the agricultural 
sector. 

Table 3. The number of AEE grades in each district and county of Chongqing from 2010 to 2021.

Efficiency class 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

Complete efficiency 10 12 12 12 10 11 8 10 18 18 17 16

High efficiency 1 1 1 1 1 0 2 3 2 3 1 1

Medium efficiency 3 3 3 1 2 2 5 5 4 3 7 8

Low efficiency 15 12 10 11 11 11 13 11 8 9 8 9

Inefficiency 9 10 12 13 14 14 10 9 6 5 5 4

Fig. 3.  AEE values of Chongqing and its regions from 2010 to 2021.
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Overall Differences in AEE

Between 2010 and 2021, the coefficient of variation 
for AEE in Chongqing exhibited a pattern of fluctuation 
(Fig. 4). Subsequently, starting from 2018, a consistent 
downward trend in the coefficient of variation was 
observed, indicating a progressive reduction in the 
disparities of AEE throughout the 38 districts and 
counties in Chongqing. At the regional level, the 
coefficient of variation for AEE in MUA and UTC 
is comparable to that observed across the entire city. 
However, the coefficient of variation for AEE in UTC 
is greater than that in MUA, suggesting a significant 
disparity in the growth of AEE inside UTC. The 
central urban area of MUA provides a radiation drive 
that confers several advantages in the integration of 
agriculture and tourism, leisure agriculture, and the 
enhancement of agricultural technology. In contrast, 
UTC lacks an effective radiation growth pole drive. 
Hence, it can be inferred that there exists a discernible 
positive correlation between AEE and location 
conditions in Chongqing. The coefficient of variation 
for AEE in WUC exhibits a fluctuating pattern 
characterized by a sequence of declines, increases, 
and subsequent declines. This can be attributed to the 
unique agricultural industry development approach 
known as “one county and one special” in WUC, 
which results in varying influencing factors for each 
industry. Consequently, the disparity in AEE across 
different districts and counties experiences intermittent 
contraction and expansion.

Spatial Pattern Analysis of AEE

Spatial Pattern Distribution of AEE

To elucidate the spatial pattern characteristics 
of AEE in Chongqing, this study has chosen four 
notable years, namely 2010, 2014, 2018, and 2021.  
The visualization of AEE throughout the 38 districts 

and counties in Chongqing has been accomplished using 
ArcGIS 10.8 software (Fig. 5).

Fig. 5 illustrates the AEE levels of various districts 
in Chongqing in 2010. The districts of Yuzhong, 
Datukou, Jiangbei, Jiulongpo, Nan’an, Yubei, Banan, 
Jiangjin, Yongchuan, and Pengshui Miao and Tujia 
Autonomous achieved complete efficiency. Tongnan 
demonstrated high efficiency, while the remaining 
districts and counties exhibited medium or below-
average efficiency levels. The presence of numerous 
low-efficiency districts and counties poses a constraint 
on the overall improvement of AEE in the city. In 
comparison to the year 2010, the efficiency levels of 
Dazu, Hechuan, Rongchang, Dianjiang, and other 
districts and counties in 2014 have demonstrated 
improvement and have reached a state of complete 
efficiency. However, the overall level of AEE in the 
entire city has not experienced effective improvement, 
but rather has declined from a high efficiency level to 
a medium efficiency level. In contrast to the data from 
2014, the overall energy efficiency of the entire city 
exhibited a positive trajectory in 2018. Specifically, both 
Jiangbei and Jiangjin regions experienced a rise in AEE, 
thereby regaining the level of complete efficiency. In the 
year 2021, a total of 16 districts and counties achieved 
complete efficiency in the AEE sector. These districts 
were primarily located in the central urban area, as 
well as in Rongchang, Dazu, Jiangjin, Wanzhou, and 
other regions. Notably, the spatial distribution pattern 
has undergone a shift from the central urban area being 
the focal point in 2010 to the main axis now being 
Jiangjin-Dianjiang-Wanzhou, with Rongchang-Dazu and 
Qianjiang serving as the two wings.

Changing Trend of Spatial Pattern of AEE

To examine the spatial pattern change trend of AEE 
in Chongqing, the trend analysis tool within ArcGIS 10.8 
software was employed. This tool facilitated the creation 
of a three-dimensional trend map depicting the AEE 

Fig. 4.  Variation coefficient of AEE in Chongqing and all regions from 2010 to 2021.
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values across 38 districts and counties in Chongqing 
for four selected years (Fig. 6). In this map, the AEE 
value for each district and county was assigned as the Z 
value, while the due east and due north directions were 
designated as the X and Y values, respectively.

The analysis of Fig. 6 reveals that the spatial 
distribution of Chongqing’s AEE in the east-west 
direction exhibited a gradual decline from west to east 
in 2010. Additionally, a distinctive inverted U-shaped 
pattern was observed from the north to the south. These 
findings suggest that the overall level of Chongqing’s 
AEE was relatively low during the specified time 
period, with the primary differentiating factor being 
the regional disparity in the north-south direction. In 
contrast to the year 2010, the spatial distribution of 
Chongqing’s AEE in 2014 exhibited a notable decline 
in the east-west direction with a pronounced west-to-
east gradient. Additionally, the AEE demonstrated  
a characteristic inverted U-shaped pattern, indicating 
an upward tendency in the north and south directions, 
the AEE saw a drop, with its average value declining 
from 0.81 in 2010 to 0.79. The spatial projection of AEE 
in 2018 and 2021 exhibits a comparable pattern to that 
observed in 2010, in the east-west direction, there is  
a gradual decline from west to east. Conversely, in the 

south-north direction, there is an inverted U-shaped 
growth trend. However, the magnitude of the change 
is substantial, indicating an increased spatial disparity 
between the south and north directions. During the 
period of investigation, it was observed that the 
magnitude of change in AEE was more pronounced 
in the north-south direction compared to the east-west 
direction. This suggests that the disparity between the 
northern and southern regions was greater than that 
between the eastern and western regions. This finding 
aligns with the regional economic development pattern 
observed in Chongqing.

Spatial Correlation Analysis of AEE

GSA Analysis of AEE

The GeoDa 1.20 software was utilized to compute the 
global Moran’s I index, standard deviation, Z-statistic 
test, and p significance level of AEE in 38 districts and 
counties  of Chongqing across four representative years. 
The spatial weight matrix was established using the 
spatial proximity matrix Queen criterion (Table 4).

The analysis of Table 4 reveals that the global 
Moran’s I index of AEE in Chongqing exhibits positive 

Fig. 5. Spatial distribution pattern of AEE in Chongqing (2010, 2014, 2018, 2021).
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values ranging from 0.2082 to 0.5304 during the study 
period. Furthermore, all p-values associated with 
these values are found to be less than 0.05, satisfying 
the significance test at a 95% confidence level.  
The analysis suggests that the AEE in Chongqing 
exhibits favorable spatial autocorrelation, indicating 
the presence of clustering among districts and counties. 
Despite a decline in the global Moran’s I index of AEE 
in Chongqing between 2010 and 2014, subsequent 
data from 2014 to 2021 reveals a rising trend, with 
values increasing from 0.2082 to 0.4337. This suggests 
a growing agglomeration pattern within Chongqing, 
wherein lower districts and counties tend to cluster 
together, exhibiting characteristics of both H-H and L-L 
spatial agglomeration.

LSA Analysis of AEE

To examine the spatial concentration of AEE 
within the 38 districts and counties of Chongqing at  
a localized level, the software GeoDa 1.20 was 
employed to generate LISA agglomeration maps for 

AEE in four selected years (Fig.7). The data presented 
in Fig.7 illustrates the count of districts and counties 
exhibiting positive spatial correlation, specifically H-H 
and L-L agglomeration, for the years 2010, 2014, 2018, 
and 2021, the respective counts for these years are 12, 5, 
11, and 14. These figures suggest a discernible pattern of 
increasing strength in the H-H and L-L agglomeration of 
AEE in Chongqing from 2014 to 2021. The prevalence 
of districts and counties exhibiting High-Low (H-L) and 
Low-High (L-H) agglomeration patterns is relatively 
stable at approximately five. Through a comparative 
analysis of the four distinct types of agglomeration, it is 
possible to gain a comprehensive understanding of their 
respective characteristics and implications. 

The H-H agglomeration mostly exhibits a spatial 
distribution pattern concentrated on central urban 
areas, namely Dadukou, Banan, Jiulongpo, South Bank, 
Jiangbei, and Yubei. Additionally, a limited number of 
MUA, such as Jiangjin and Changshou, also contribute 
to the overall distribution of the agglomeration. 
Changshou has been included in the H-H agglomeration 
since 2018, while Qijiang joined the ranks in 2021.  

Fig. 6. Trend line of AEE in Chongqing (2010, 2014, 2018, 2021).

Year I E[I] mean stdev z-value p-value

2010 0.2304 -0.0270 -0.0280 0.1088 5.1313 0.001000

2014 0.2082 -0.0270 -0.0278 0.1064 2.2185 0.014000

2018 0.3957 -0.0270 -0.0284 0.1093 3.8800 0.001000

2021 0.4337 -.0.270 -0.0276 0.1095 4.2144 0.001000

Table 4. Global Moran’s I index distribution of AEE in Chongqing (2010, 2014, 2018, 2021).
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The rationale behind this is that the central urban area 
of Chongqing holds significant ecological importance 
as a functional area and a popular tourism destination. 
Consequently, there exists a pressing need for stringent 
ecological environmental protection measures. 
The central urban area primary focus lies in the 
development of recreational agriculture and ecological 
agriculture. Hence, the AEE in these regions operates 
at either optimal efficiency or high efficiency, exerting  
a discernible radiation-induced influence on the adjacent 
areas. Nevertheless, there continues to exist a specific 
quantity of L-H agglomeration regions adjacent to 
H-H agglomeration regions, and it is imperative to 
consistently enhance the dispersion impact of H-H 
agglomeration regions over the course of agricultural 
economic development in the forthcoming years. 

The L-H agglomeration is mostly concentrated in 
the western and southern regions of the central urban 
area, with these areas being in close proximity to the 
H-H agglomeration areas. In the year 2010, the region 
consisted of five districts, namely Shapingba, Tongliang, 
Beibei, Bishan, and Qijiang. However, by 2021, the 
number of districts had been reduced to four, specifically 
Shapingba, Tongliang, Bishan, and Fuling. Within this 
agglomeration area, Shapingba, Tongliang, Bishan, and 
Qijiang have consistently been present. Notably, Qijiang 
has experienced a noteworthy enhancement in its AEE, 
transitioning from a L-H agglomeration level to a H-H 

agglomeration level. This shift can be attributed to the 
influential contributions made by Jiangjin, Banan, and 
Nanchuan in the domains of ecological environment, 
modern agriculture, and science and technology 
investment.

The L-L agglomeration area is predominantly located 
in the eastern region of the UTC. This distribution 
can be attributed to the evident disadvantages of the 
eastern location within the UTC, which are influenced 
by factors such as the level of economic development, 
agricultural labor force, and population. Consequently, 
the eastern region faces limitations in terms of capital 
investment, scientific and technological investment, and 
ecological investment, resulting in relatively limited 
progress in these areas. Additionally, the agricultural 
economy in the eastern region lags behind in terms of 
development. Between the years 2010 and 2021, there 
was a decrease in the number of L-L agglomeration 
areas from 5 to 3, indicating a discernible downward 
trajectory. Three districts, namely Chengkou, Wushan, 
and Yunyang, underwent a transition from being part 
of an agglomeration characterized by L-L in 2010 to 
becoming regions of negligible significance. This shift 
suggests that districts and counties that are concentrated 
and adjacent, and exhibit low levels of AEE, may have 
adverse effects on the surrounding areas.

The H-L agglomeration areas are primarily 
scattered throughout a small portion of the WUC. H-L 

Fig. 7.  LISA agglomeration diagram of AEE in Chongqing (2010, 2014, 2018, 2021).
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agglomeration areas increased from 0 to 1, including 
Qianjiang, between 2010 and 2014. Indicating that 
Qianjiang boosted its agricultural investment over the 
study period, which also helped to reduce the ecological 
environmental pollution brought on by agricultural 
production and raised the level of AEE, the city’s 
status changed from non-significant in 2010 to H-L 
agglomeration in 2021. However, the AEE of Pengshui 
and Youyang, which are close by to one another, 
has always been in the inefficient area, and there is  
a geographical advantage to “being spread,” so their 
AEE has plenty of opportunity to grow.

From 2010 to 2021, it can be observed that  
a majority of districts and counties in Chongqing, 
approximately 60%, lack discernible agglomeration 
features. This suggests that the level of agglomeration 
in the agricultural economy within most districts 
and counties in Chongqing is rather low. During the 
study period, it was observed that the number of H-H 
agglomeration areas in AEE exhibited a consistent 
upward trend. Notably, Changshou and Qijiang districts 
and counties were sequentially included in the H-H 
agglomeration areas, suggesting that the central urban 
area exerted a significant influence on the surrounding 
regions. Conversely, the number of L-L agglomeration 
areas displayed a declining pattern over the years, 
with districts and counties such as Wuxi and Fengjie 
consistently falling within this category. Hence, in 
the pursuit of comprehensive rural revitalization and 
the expedited modernization of agriculture in the 14th 
FYP period, Chongqing should undertake the task of 
consolidating and disseminating successful practices in 
the efficient utilization of agricultural resources within 
the central urban areas. Additionally, it should enhance 
its guidance in the adoption of modern agricultural 
science and technology, modern management 
techniques, and optimal resource allocation in the 
eastern regions of the UTC and the WUC. Enhance the 
overall proficiency of AEE in Chongqing.

While this study used super-efficiency SBM-DEA 
and ESDA models to investigate the dynamic evolution 
characteristics of AEE and spatial patterns in each 
district and county of Chongqing, it is important to 
acknowledge several limitations that warrant further 
discussion: This study employs the super-efficiency 
SBM-DEA model to examine the impact of undesirable 
output factors on efficiency. However, due to data 
collection challenges, this study only considers ACE 
and ANSP as undesirable outputs, while neglecting 
the influence of agricultural production on other 
dimensions, such as the deterioration of cultivated land 
quality and soil erosion. Consequently, there exists  
a certain degree of deviation between the AEE value 
and the actual value, highlighting the need for further 
improvement in future research. Furthermore, the 
indicators chosen for analysis in this study are limited 
to those that have readily available data and can be 
easily quantified. However, it is important to note that 
certain factors, such as agricultural economic policy and 

government management level, which are challenging to 
quantify yet have a significant impact on AEE, have not 
been included in the analysis. Addressing this limitation 
and incorporating these factors into the index system 
will be a key focus of future research. Thirdly, the level 
of AEE influences the quality of agricultural economic 
development. In light of the need to build agricultural 
power more quickly, it is important to find ways to 
coordinate rapid agricultural development with the 
protection of the environment and the conservation of 
natural resources. This will help prevent the AEE from 
declining due to overuse of agricultural resources and 
ecological environment damage.

Conclusions

This study employs the super-efficiency SBM-
DEA and ESDA models to assess the AEE of 38 
districts and counties in Chongqing. It further conducts  
a quantitative analysis of the temporal evolution 
features, spatial pattern change trend, and spatial 
correlation of AEE in Chongqing. By comparing the 
super-efficiency SBM-DEA model with the CRR-DEA 
model without considering the undesired output, the 
following conclusions have been derived. The results 
indicate that the CRR-DEA model disregards the impact 
of undesirable output factors such as ACE and ANSP 
and overestimates the actual utilization of agricultural 
resources, whereas the super-efficiency SBM-DEA 
model is more consistent with the actual agricultural 
production process. Nevertheless, the two models’ 
AEE measurements in Chongqing are at a high level, 
suggesting that there is still possibility for efficiency 
growth. From a temporal perspective, the AEE of 
Chongqing has consistently been in the high efficiency 
category between 2010 and 2021, with a gradual upward 
trend. This suggests that there is potential for further 
improvement in future AEE. From a spatial perspective, 
the distribution of spatial pattern is uneven, displaying 
a development pattern of UTC>MUA>WUC. In terms 
of the trend in spatial pattern change, it can be observed 
that the east-west direction exhibits a gradual decline 
from west to east, while the north-south direction 
demonstrates a growing trend resembling an inverted 
U-shape. However, it is noteworthy that the disparity in 
the north-south direction is more pronounced compared 
to the east-west route. Regarding spatial correlation, 
the AEE in Chongqing revealed a positive spatial 
autocorrelation. Moreover, notable patterns of H-H 
agglomeration and L-L agglomeration were observed 
across the various districts and counties. The H-H 
agglomeration primarily concentrates in the center 
urban area and exhibits a tendency to expand towards 
adjacent areas and counties. Conversely, the L-L 
agglomeration is predominantly located in the eastern 
region of the UTC and displays a discernible decline. 
During the study period, there was an observed rise in 
the quantity of districts and counties in Chongqing that 
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exhibited a positive spatial correlation of AEE. This 
suggests that the agglomeration characteristics of AEE 
were gradually strengthened.

In light of the “dual carbon” target, this study offers 
remedies and proposals for Chongqing to enhance 
Agricultural Emissions Efficiency by considering 
the current state of agricultural growth. These 
recommendations focus on two key aspects: reducing 
ACE and enhancing the efficiency of agricultural 
resource utilization.

Firstly, optimize the ANSP control system and 
enhance the AEE [44, 45]. Currently, the AEE in 
Chongqing exhibits a consistent variation around 0.8. 
This suggests that there is still potential for enhancing 
AEE. It is worth noting that the overutilization of 
agricultural resources and the degradation of the 
ecological environment are strongly intertwined with 
AEE. Therefore, it is imperative for Chongqing to 
effectively integrate many dimensions of agricultural 
production, including resources, technology, and 
societal factors [46]. This entails optimizing the 
system for controlling ANSP, thereby enhancing AEE. 
Specifically, it can be carried out from several aspects: 
First, to ensure the efficient prevention and control 
of ANSP, improve the financial support for ANSP 
control, implement administrative law enforcement, 
technology promotion, and other supporting funds in 
the treatment process; Second, increase awareness of 
ANSP control through knowledge lectures and media 
commentary, encourage regional agricultural production 
and operation subjects to volunteer for ANSP control 
work, and raise their self-discipline awareness [47]; 
Third, to master the fixed-point monitoring of diverse 
ANSP, increase the dynamic monitoring of pollution by 
establishing state control points of ANSP monitoring in 
all districts and counties of the city. At the same time, 
professional training should be given to the monitoring 
personnel to improve the accuracy of data monitoring, 
so as to improve the efficiency of ANSP control.

Secondly, foster the use and advancement of 
novel agricultural production technologies, while 
advocating for environmentally sustainable agricultural 
development. The excessive utilization of agricultural 
resources, such as pesticides, fertilizers, and agricultural 
films, during the process of agricultural production can 
directly contribute to the fall of AEE. In recent years, 
the agricultural departments in Chongqing have been 
aggressively advocating for the implementation of the 
zero-growth policy concerning chemical fertilizers 
and pesticides. As a result, there has been a noticeable 
decline in the overall usage of pesticides, chemical 
fertilizers, and agricultural film on an annual basis. 
Nevertheless, when considering long-term sustainable 
development, there remains significant potential for 
reducing the utilization of agricultural resources, 
such as pesticides, fertilizers, and agricultural films. 
Therefore, it is imperative for governmental bodies and 
agricultural departments to proactively advocate for the 
adoption of soil analysis technology. This technology 

enables the identification of distinct soil types, thereby 
facilitating the determination of appropriate chemical 
fertilizers and dosage needs for each soil type. By using 
this approach, it becomes possible to achieve rational 
fertilization practices, thereby mitigating the adverse 
environmental impacts resulting from the irrational use 
of fertilizers. It is imperative to actively advocate for the 
widespread adoption of environmentally friendly plant 
protection technologies. By doing so, we may effectively 
mitigate the occurrence of pests and diseases, while 
simultaneously minimizing the reliance on pesticides. 
This approach not only diminishes the potential harm 
posed to microorganisms within the ecosystem, but also 
safeguards human health. Another measure is to design 
and fabricate a novel biodegradable agricultural film 
with the aim of mitigating the adverse effects of residual 
film on water quality and soil, thereby promoting 
sustainable agricultural practices.

Finally, in conjunction with the distinctive features 
of agricultural growth in the region of Chongqing, 
it is imperative to use the strengths and address the 
weaknesses in order to maximize its potential. The 
spatial distribution of AEE in Chongqing has an 
uneven pattern, characterized by a distribution trend 
of UTC>MUA>WUC. Among them, WUC exhibits 
the lowest AEE, consistently occupying a position 
within the lower efficiency spectrum over the majority 
of observed years. The limitations primarily stem from 
geographical factors characterized by an abundance of 
mountains and a scarcity of arable land. Consequently, 
the implementation of agricultural modernization 
encounters challenges. In their pursuit of increased 
productivity, farmers resort to the extensive use of 
pesticides, fertilizers, and agricultural film, thereby 
leading to significant pollution from non-point sources 
in the agricultural sector. Therefore, WUC has the 
potential to integrate regional characteristics and adopt 
a transformative approach to agricultural development. 
This can be achieved through the promotion of fine 
agriculture, the adoption of advanced agricultural 
production technology, the cultivation of safe melons 
and fruits, the implementation of soilless culture and 
fish farming, and the establishment of modern mountain 
leisure agricultural parks. These initiatives aim to 
enhance the value of agricultural products and improve 
agricultural ecological efficiency. UTC possesses a 
favourable allocation of natural resources. Wanzhou, 
Kaizhou, Dianjiang, Zhongxian, and Yunyang are widely 
recognised as the primary regions within Chongqing 
that exhibit significant agricultural productivity in terms 
of grain cultivation. Efforts can be consistently made 
to facilitate the establishment of high-quality farmland 
and foster the advancement of agriculture in a manner 
that is both efficient and of superior standards. MUA 
exhibits favourable economic growth circumstances, 
whereas the availability of agricultural land resources 
is limited. The potential areas of emphasis include the 
advancement of contemporary urban agriculture, the 
augmentation of investments in agricultural research 
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and technology, and the facilitation of carbon reduction 
initiatives. In summary, the AEE of UTC and MUA 
exhibits a reasonably high level. Specifically, the former 
is situated inside the complete efficiency area, while 
the latter falls within the high efficiency area. In the 
future, it is recommended that efforts be made to sustain 
their agricultural development advantages, assume  
a leadership role, and further enhance their influence 
and impact on the surrounding regions.
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