ORIGINAL RESEARCH
Pb Removal Using Mixed Substrates
in a Constructed Laboratory-Scale Unvegetated
Vertical Subsurface-Flow Wetland
Jun Ren1,2, Suxia Gao1,2, Ling Tao1,2, Hua Li1,2
More details
Hide details
1School of Environmental and Municipal Engineering. Lanzhou Jiaotong University,
Lanzhou 730070, Lanzhou, 730070, P. R. China
2Engineering Research Center for Cold and Arid Regions Water Resource Comprehensive Utilization,
Ministry of Education,
Lanzhou, 730070, P. R. China
Submission date: 2014-08-29
Final revision date: 2015-10-29
Acceptance date: 2015-10-29
Publication date: 2016-01-25
Pol. J. Environ. Stud. 2016;25(1):283-290
KEYWORDS
TOPICS
ABSTRACT
In this study, five mixed substrates – SSFGF, FSSGF, FSSFF, FSSFG, and FSFGF – consisting of fly
ash, sludge, soil, fine cinder, gravels, and fine sand, were made in order to test the removal effect of lead.
Multiple comparisons and analysis of variance were used to analyze physicochemical properties and the
removal efficiency of lead. The test results showed that for five substrates, the effluent concentrations were
not significantly different among 10 mg/L and 40 mg/L initial concentrations. For the other three initial concentrations
(20 mg/L, 80 mg/L and 160 mg/L) from five substrates, it was significantly different. Moreover,
when decomposition time was 0.25 h~48 h, the removal efficiency of Pb from the solution was better for
substrate SSFGF-based wetland than those of the other substrate-based wetlands at low and medium initial
concentrations (10 mg/L, 20 mg/L, 40 mg/L, and 80 mg/L), and then it was slightly better for substrate
FSSFF-based wetland. At relatively high initial concentrations (160 mg/L), the removal efficiency was better
for substrate FSSFF-based wetland than those of the other substrate-based wetlands, and then it was
slightly better for substrate SSGFF-based wetland. Our study further suggested that SSFGF and FSSFF were
the two relatively ideal substrate materials suitable for removal of Pb from a constructed wetland system.