ORIGINAL RESEARCH
Numerical Simulation of Contaminant Removal
in a Vertical Subsurface-Flow
Constructed Wetland
Wei Ruan1, Xiao Shang2, Hongwei Zhu3
More details
Hide details
1Ocean College, Zhejiang University, Zhoushan, China
2Shanghai Water Engineering Design and Consulting Co. Ltd, Shanghai, China
3Shanghai Investigation, Design & Research Institute Co. Ltd, Shanghai, China
Submission date: 2017-02-28
Final revision date: 2017-07-03
Acceptance date: 2017-07-11
Online publication date: 2018-01-15
Publication date: 2018-01-26
Pol. J. Environ. Stud. 2018;27(2):819-827
KEYWORDS
TOPICS
ABSTRACT
Hydraulic characteristics and contaminant removal effect in a vertical subsurface-flow constructed
wetland were investigated by establishing a numerical model. The results demonstrated that retardation
factor decreased with time while wetland substrate was gradually filled with the importation of
contaminated water until reaching the saturation state. The flow velocity increased with time when
the substrate was not on saturated condition, and decreased rapidly after saturation. The process of the
substrate reaching saturation state was layered and gradual. The increased rate of effective saturation in
substrate was less than that of the post-period: the higher the saturation level, the more easily water flowed.
When the substrate was not completely saturated, pollutant concentration increased sharply to the max
value. After the substrate was at the saturation state, concentrations of contaminants decreased slowly
with time as adsorption within the solid particles and biodegradation. At the early stage the retardation
factor gradually decreased as water depth increased, resulting in a close relationship between effective
saturation and the retardation factor. With the increase of porosity and partition coefficient and decrease
of degradation rate, hydraulic efficiency of the vertical subsurface-flow constructed wetland lessened.