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Abstract

Considering the high variability of Covid-19 and unknown sequelae of rebound infections.  
We may be caught in a long-term struggle against the virus. The evaluation and summary  
of past anti-epidemic policies highlight profound practical significance for either decision makers  
or individuals. This paper applies both theoretical and empirical approaches to study the impact of city 
lockdown and air pollution on Covid-19. First, we apply an extended Susceptible-Infected-Removed 
(SIR) model to identify the relationship between lockdown, air pollution, and Covid-19 cases. Second, we 
apply the Differences-in-Differences (DID) model and Poisson Pseudo-Maximum Likelihood (PPML) 
model to test the impact of lockdown on Covid-19, by sorting out lockdown policies implemented by 
cities during the epidemic. Third, we empirically analyze the impact of air pollution on Covid-19,  
based on daily data from 257 cities in China. Finally, we examine the mechanism by which lockdown 
impacts Covid-19. Newly confirmed Covid-19 cases are reduced by 31.1% nationwide (excluding 
Wuhan) during the lockdown period. Regions with lower air pollution experience fewer Covid-19 cases.  
Air pollution aggravates Covid-19, with the pollutants PM2.5, PM10, NO2, CO, and O3 having the 
greatest impact. The results indicate that an increase in one unit of air quality index (AQI) concentrations 
is associated with 1.723 more newly confirmed cases. The effects of air pollution on the spread  
of Covid-19 diminish as the population size increases. Lockdown can inhibit the spread of Covid-19  
by reducing air pollution and population movement.
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Introduction

Covid-19 has killed more than 6.9 million people 
worldwide and caused significant economic losses. 
Today, although the World Health Organization 
has downgraded the public health event level of the 
Covid-19, it does not mean that the Covid-19 has ended 
completely. According to Academician of the Chinese 
Academy of Sciences Zhong Nanshan1, second round 
of infection in China will peak at the end of June, with 
the number of infections likely to reach 65 million per 
week. Considering the high variability of Covid-19 
and unknown sequelae of rebound infections. We may 
be caught in a long-term struggle against the virus. 
The prevention and treatment of Covid-19 should still 
be highly valued, and relevant experience should also 
be systematically sorted out and summarized. Among 
them, the lockdown policy deserves more attention as 
the most important means to combat the spread of the 
virus in the early stages.

After the first case of Covid-19 in Wuhan, China 
was confirmed in early December 2019, the Chinese 
government introduced a lockdown policy in Wuhan on 
January 23, 2020. By isolating confirmed cases, tracking 
contacts, suspending public transportation, canceling 
public events, closing schools and entertainment 
facilities, and establishing checkpoints, the lockdown 
policy effectively limited the spread of Covid-19 early 
in the outbreak. Since then, the Chinese government 
had launched public health emergency measures in 
all provinces. Eventually, the Chinese government’s 
epidemic prevention and control work had shifted 
quickly from curbing the domestic spread of Covid-19 
to preventing inbound infections and a domestic 
resurgence.

At present, the majority of the literature supports 
the conclusion that lockdown suppresses the spread of 
Covid-19 [1, 2]. However, in terms of the composition 
of the lockdown-related articles, most of them belong 
to comparative and forecasting studies, which mainly 
use mathematical modeling, simulation, descriptive 
statistics and other methods to predict the changes in the 
Covid-19 epidemic that lockdown may lead to. However, 
the specific impact of lockdown policy on the changes 
in the Covid-19 epidemic still needs normative public 
policy evaluation research to elaborate. Moreover, the 
related public policy research focuses on the mechanism 
of human mobility and pays little attention to other 
mechanisms.

In addition to blocking population migrations, the 
lockdown produces perceived improvements in air 
quality [3]. The temporary closure of many shops and 
enterprises during the lockdown led to sharp declines 
in industrial activities and vehicle use, leading to 
improved air quality in the lockdown cities. He et 

1	 From Mr Zhong Nanshan’s speech at The Greater Bay Area 
Science Forum (2023)

al. (2020) [4] find that the air quality index (AQI) and 
weekly SO2 concentration drop by 19.4% and 13.9 ug/
m3, respectively, in lockdown cities compared to cities 
that do not lockdown. The lockdown restricts residential 
activities and lowers consumption, effectively reducing 
air pollution [5, 6]. Based on a study in Wuhan, Cole 
et al. (2020a) [3] find that the Wuhan lockdown led to a 
noticeable decline in SO2 and PM10 concentrations.

Furthermore, air pollutants, as carriers of virus 
transmission, may affect epidemic transmission between 
people [7]. Some studies have found that air pollution 
is significantly associated with Covid-19 cases and 
deaths [8]. Studies have shown that bad environmental 
conditions would lead to an increase in mortality in 
the mid-term of the Wuhan outbreak and not only 
directly but indirectly affect the spread of the epidemic 
by affecting the average humidity [9]. Two studies 
conducted in California (USA) and the Netherlands also 
found a high positive correlation between air pollution 
and Covid-19 cases [10, 11]. However, the spread of 
Covid-19 is closely related to the location, transmission 
route, and infected population of the epidemic. Areas 
with severe air pollution are not necessarily areas with 
severe epidemic transmission. The Covid-19 may spread 
in areas with better air quality, as these areas are closer 
to the initial outbreak site [12]. This makes it even more 
necessary to incorporate air pollution mechanisms into 
public policy evaluation systems to distinguish factors 
such as distance and air pollution. Thus, air pollution 
itself is not only likely to affect the spread of Covid-19, 
but also an important mechanism for lockdown affecting 
the spread of Covid-19, nevertheless, the existing articles 
are rarely involved.

We also find that there is a lack of quantitative 
analysis of the impact of lockdown policy on the 
spread of Covid-19 in different scenarios in the existing 
public policy evaluation studies. For example, whether 
there are differences in the impact of lockdown under 
different severity of the epidemic, different city sizes, 
and different levels of air pollution. Furthermore, there 
is potential for further improvement in the econometric 
methods used in existing Covid-19-related policy 
evaluation research. For example, the data set of the 
dependent variables usually contains a large number 
of zero values, which may lead to a serious biased 
estimation problem.

Given the background above, we establish an 
extended SIR model to analyze the theoretical 
mechanism underlying how the lockdown impacts 
Covid-19, and propose hypotheses. Using lockdown 
as a quasi-natural experiment, we set up cities with 
lockdown as a treatment group and cities without 
lockdown as a control group and applied the difference-
in-differences (DID) model and the Poisson Pseudo-
Maximum Likelihood (PPML) estimator (rather than 
the OLS estimator) to explore the implementation effect 
of lockdown. Furthermore, assuming air pollution can 
accelerate the incidences of Covid-19, in addition to 
having a direct effect on Covid-19, the lockdown may 
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have also indirectly contained the spread of Covid-19 
by reducing air pollution. To test these ideas, we use 
daily air quality index (AQI) data from 20 January to  
20 February 2020 published by the China Environmental 
Monitoring Centre to assess the impact of air pollution 
on the spread of Covid-19. We use panel quantile 
regression and grouping regression to analyze the 
heterogeneity of different epidemic severity levels and 
different pollutants. Finally, we investigate whether the 
lockdown reduces the spread of Covid-19 by lowering 
air pollution, reducing both inter-city and intra-city 
migration.

The rest of this paper is organized as follows: 
Section 2 introduces the theoretical mechanism and 
research hypothesis. Section 3 describes our data and 
methodology. Section 4 reports our results and Section 
5 examines the mediating mechanism of our results. 
Section 6 discusses and concludes.

Theoretical Model and Hypothesis

We apply the extended SIR model used by Pindyck 
(2020) [13] and Chudik et al. (2020) [2] to contain the 
variable of death and to account for the effect of air 
pollution and lockdown on Covid-19. The extended SIR 
model is written as formula 1.

t t t tP S I R D= + + +                  (1)

where P denotes the total population size of a region. 
The model assumes P is a constant value and consists 
of four different types of people: S, I, R, and D; St refers 
to people who have not yet been infected with Covid-19 
during the t period. Because of the risk of infection, 
they are also called susceptible people; It refers to 
people who have been infected with Covid-19 during 
the t period; Rt refers to people who have recovered; Dt 
denotes people who have died. We assume that people 
who have recovered from Covid-19 would be no longer 
susceptible.

To explore the impact of lockdown on the epidemic, 
we apply the method used by Chudik et al. (2020) [2]. 
The P in Eq. (1) is divided into two groups: Pl is the 
fraction of the population that is healthy and has been 
isolated; Pe is the fraction of the population exposed to 
Covid-19. We assume that the risk of getting infected 
with Covid-19 is low for people who have been isolated. 
Therefore, the model associated with the lockdown is 
written as: 

e t t t tP P S I R Dδ= = + + +            (2)

where δ is the proportion of Pe to P. The expression 1-δ 
measures the level of lockdown enforcement. Cities 
with a higher value of 1-δ implement stricter lockdown 
measures. A value of δ = 1 indicates the city has no 
lockdown.

We not only consider lockdown in the model, but 
also put air pollution into the model as an influencing 
factor. Air pollution can accelerate the spread of the 
epidemic, decrease the rate of recovery, and increase 
the death rate [8-11]. We perform a series of differential 
equation transformations based on Eq. (1) and Eq. 
(2) to obtain the function of the relationship between 
confirmed cases, lockdown and air pollution. We finally 
get a second-order nonlinear difference equation as:2
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where it = It/P; β is the contact rate of Covid-19, which 
depends on the biological nature of the Covid-19 virus 
and which we assume does not change with time or 
place; γr and γd are the recovery rate and the death rate, 
respectively; a is the impact coefficient of air pollution. 
We consider aβ, γr/a, and aγd to be the actual contact 
rate, the actual recovery rate, and the actual death rate 
of Covid-19, respectively, under the influence of air 
pollution.

We assume the initial value of i1 and i2 are functions 
of δ in Eq. (3). This yields:
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(4)
In order to analyze Eq. (3) and Eq. (4) more vividly, 

Fig. 1 and Fig. 2 show the estimated results of Eq. (3) 
and Eq. (4) graphically, where the ordinate represents 
the proportion of confirmed cases and the abscissa 
represents time.

To examine the effect of the lockdown on the spread 
of Covid-19, we assume that the actual contact rate, 
the recovery rate, the death rate, and the air pollution 
level are symmetrical. We assume that β = 0.21 [13], 
γr = 0.0686, γd = 0.0014 [14, 15], and a = 1.25 and set 
different δ value to simulate the spread of Covid-19 in 
Eq. (3). Fig. 1 shows the simulation results. We set three 
δ values: δ = 1, δ = 0.75, and δ = 0.5. In this situation, 
the corresponding implementation strengths (1-δ) are 
0, 0.25, and 0.5, respectively. The expression 1-δ = 0 
represents the situation without any lockdown measures. 
Fig. 1 shows that the peak of the Covid-19 infected cases 
curve reaches the highest level in cities where there was 
no lockdown. As the strength of city-specific lockdown 
measures increases, the peak gradually decreases. 
Therefore, we propose the following hypothesis:

Hypothesis 1: Implementing a lockdown effectively 
curbs the spread of Covid-19. Cities implementing 
stronger lockdown better curb the spread of Covid-19.

To examine the effect of air pollution on Covid-19, 
we analyze the spread of Covid-19 under different air 
pollution levels, assuming that the actual contact rate 

2	 See Appendix for the derivation process.
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(aβ), the recovery rate (γr/a), the death rate (aγd), and the 
strength of lockdown implementation are symmetrical. 
First, we assume that β = 0.21, γr = 0.0686, γd = 0.0014, 
and δ = 0.5, and set different a values to simulate 
the spread of Covid-19 using Eq. (3). The simulation 
results are shown in Fig. 2. We set three a value: a = 1,  
a = 1.25, and a = 1.5. The expression a = 1 signifies there 
is no air pollution; a>1 means there is air pollution in 
the city, with higher values associated with more serious 
air pollution. Fig. 2 shows that the time distribution (it) 
of Covid-19 infected cases is relatively flat. As the air 
pollution increases, the peak of Covid-19 infected cases 
gradually increases, with a faster peak period. This leads 
to Hypothesis 2:

Hypothesis 2: Air pollution accelerates the rate of 
Covid-19 spread and exacerbates the degree of spread. 
Cities with more serious air pollution have a higher rate 
and degree of Covid-19 spread.

                   

Methodology

Difference-in-Differences Model

We first examine the impact of lockdown on the 
spread of Covid-19, considering the lockdown to be 
a quasi-natural experiment. Cities that implement 
lockdown are the treatment group; and cities that do not 
implement lockdown are the control group. Each city 

Fig. 1. The simulation of Covid-19 under different lockdown strength.

Fig. 2. The simulation of Covid-19 under different air pollution levels.
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United States3. As the Covid-19 outbreak in China is 
first reported in Wuhan city, the prevalence pattern is 
different in Wuhan compared to other cities. After the 
middle of January, the confirmed cases of Covid-19 
increased exponentially, due to inadequate medical 
resources. This may have contributed to a more severe 
delay and measurement errors in the number of Wuhan’s 
confirmed cases. Wuhan data are removed to eliminate 
this bias. In addition, we analyze the nationwide sample 
without cities in Hubei province, and analyze the 
Hubei province sample without Wuhan to increase the 
robustness of the empirical results.

The dependent variable is the Covid-19 (INC), 
measured using newly confirmed Covid-19 cases. 
The key independent variables are lockdown (CL) and 
air pollution (AQI). When modelling the relationship 
between lockdown, air pollution and Covid-19, a series 
of control variables are set, categorize as climate, 
distance from Wuhan (lndis), the availability of urban 
rail transit (urt), and demographic and economic-related 
variables. To assess the mediating effect of lockdown on 
Covid-19, we select AQI, the daily move-in migration 
index of a city (MI), and the daily within-city migration 
index of a city (WC) as the mediating variables. We 
discuss Covid-19, lockdown and mediating variables 
data, and each category of control variables in the 
following subsections.

Covid-19

Fig. 3 illustrates the changes in the numbers of 
newly confirmed Covid-19 cases from 20 January to 
20 February 2020, and shows that the daily new case 
count increased rapidly after 20 January, peaking on 
3-5 February. The new daily case count then trended 
downward and stabilized after 20 February. Due to 
statistical method changes, Hubei Province began to 
include clinically diagnosed cases as newly confirmed 
cases starting on 12 February. Thus, the newly 
confirmed Covid-19 case count in other cities in Hubei 
significantly increased on that day. However, the effect 
of that change can be removed from empirical research 
using time-fixed effects [17].

Lockdown

Since the Covid-19 outbreak, many cities in 
China have implemented diverse lockdown policies 
to restrict population movement and slow the spread 
of the epidemic. There are three types of lockdowns: 
(1) all transport in and out of the city is shut down; 
(2) household-based outdoor activities are restricted 
(including the closure of all public transportation, the 
prohibition of all private cars except for special permits, 
and the prohibition of public gatherings); (3) enclosed 

3	 Database of Harvard University, see https://projects.
iq.harvard.edu/chinadatalab.

implementing a lockdown at different time points, so 
we establish a continuous-time difference-in-differences 
(DID) model, specified in Eq. (5).

0 1
1

n

it it it j jit i t it
j

INC TIME Z v uCLα β λ ε
=

= + × + + ++ ∑
(5)

where i refers to cities; t is the date. INC denotes the 
daily Covid-19 case count. CL is a dummy variable 
representing the presence of a lockdown during the 
study window: if city i implemented a lockdown 
between 20 January and 20 February 2020, CL is set as 
1; if not, it is set as 0. TIME is the time dummy variable: 
if city i implements a lockdown at time t, the variable is 
set as 1 from time t; otherwise, it is set as 0. Z is the set 
of control variables, including the temperature, rainfall, 
distance from Wuhan, the construction of rail traffic, 
economic development level, and population density. 
vi represents province fixed effects; ut represents time 
fixed effects; and εit represents random error term.

There are many zero values in the dependent variable 
(INC); as such, we draw on the research of Zhang et 
al. (2020) [16] and apply a Poisson Pseudo-Maximum 
Likelihood (PPML) approach for the robustness test. 

Panel Quantile Regression Model

A quantile regression describes the different effects 
of air pollution on different levels of Covid-19 and 
comprehensively shows the distribution of the impact of 
air pollution on the spread of Covid-19. This approach 
is more stable compared to a traditional regression on 
outlier handling, as it can estimate the conditional 
median and other conditional quantiles of the dependent 
variables (INC); in contrast, the traditional regression 
estimates the conditional average only. Hence, we apply 
a panel quantile regression model as follows:

( | ) ln ( ) , 1, 2,..., , 1, 2,...,
it

T
NC it i it itQ X X i N t Tα ετ β τ= + + = =

                          
(6)

where αi represents the fixed effect, which does not 
change with the variation in quantile. Xit represents 
the dependent variables, including the key dependent 
variable lnAQI, and the set of control variables Z, which 
change with the variation of quantile. τ denotes the 
quantile. εit is a random error term. 

Data and Summary Statistics

Data

We collect city-level daily data of 257 Chinese 
cities between 20 January and 20 February 2020. 
The analysis relies on city-level Covid-19 case data 
provided by the database of Harvard University in the 



Fan J., et al.4560

community management [3]. The types and timing  
of the three lockdown policies are listed in Table 14. 
A city implementing any of these lockdown policies is 
classified as effective, that is, CL = 1; otherwise, CL = 0. 

Based on the research of Li et al. (2020) [7], air 
pollution is measured using the daily air quality index 
(AQI) published by the China National Environmental 
Monitoring Centre. In addition, we analyze pollutant 
differences using data for six air pollutants (PM2.5, 
PM10, SO2, NO2, CO, O3). The scale and intensity of 
population movement have an important impact on the 
spread of Covid-19. As the dominant search engine in 
China, “Baidu migration data” reports the real-time 
population movements of a city, including the “daily 
move-in migration index of a city (MI)”, and a “daily 
within-city migration index of a city (WC)” [3]. We 
collect the indexes of MI and WC between 20 January 
and 20 February 2020. A city with higher MI and WC 
indexes indicates that the population movement between 
and within the city is more frequent and the population 
movement intensity is greater. The data of MI and WC 
are collected from the “Harvard Dataverse”. 

Figs 4-6 show the time trends for AQI, MI, and WC 
between 20 January and 20 February 2020. All three 
variables experienced a decreasing trend after lockdown 
implementation on 20 January 2020. This indicates that 
implementing the lockdown significantly reduces both 
air pollution and population movement. Among them, the 
air pollution in Hubei province sample without Wuhan 
showed a slight upward trend between 3 February and 
5 February. This is related to the climate during the 
period. After 3 February, the weather in Hubei Province 
changed from cloudy to sunny. In addition, in sunny 

4	 This study established the lockdown start date and imple-
mentation period for each city using Wikipedia data. See 
https://en.wikipedia.org/wiki/ Covid-19_pandemic_ lock-
down_ in_ Hubei.

weather, the daily activities of residents increased, 
which caused the air pollution level to rise slightly. 
After 5 February, there was heavy rainfall in Hubei, 
and the air pollution level dropped. However, the effect 
of that change can be removed from empirical research 
using time-fixed effects and introducing climate control 
variables [17].

Climate

We use data on the daily average temperature 
(tem), 24 h accumulated precipitation (pre) and relative 
humidity (humi) to control the effects of climate on the 
spread of Covid-19. Data on three variables are collected 
from the National Meteorological Information Center’s 
“Chinese Surface Climate Data Day Value Data Set 
(V3.0)”. The temperature, precipitation, and humidity 
may have impacted the epidemic by influencing 
residential social activities and the media of spread [17]. 
For example, the Covid-19 virus can survive longer in 
lower temperatures [18]. Increased rainfall may reduce 
residential outdoor activities. Low air humidity might 
increase the stability of Covid-19 virus and favor its 
transmission [19]. These factors affect the spread of 
Covid-19. 

Distance from Wuhan

Cities that are closer geographically to Wuhan 
are more likely to have close connections through 
population flows and economic exchanges with Wuhan, 
the city with the first confirmed Covid-19 case. Statistics 
indicate that before the Wuhan lockdown from 11 to  
23 January, almost 4.3 million people flowed from 
Wuhan to the rest of China [20], significantly increasing 
the risk of spreading the epidemic. The outflow 
population from Wuhan is more likely to flow into 
cities closer to Wuhan, increasing the risk of spreading 

Fig. 3. Time trend of average newly confirmed Covid-19 cases.
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Table 1. Timetable for the implementation of lockdown in Chinese cities.

City Province The time for 
implementation City Province The time for 

implementation

Transport shutdown Zhengzhou Henan 2020-2-4

Wuhan Hubei 2020-1-23 Zhumadian Henan 2020-2-4

Huanggang Hubei 2020-1-23 Linyi Shandong 2020-2-4

Ezhou Hubei 2020-1-23 Harbin Heilongjiang 2020-2-4

Xiaogan Hubei 2020-1-24 Nanjing Jiangsu 2020-2-4

Jingzhou Hubei 2020-1-24 Xuzhou Jiangsu 2020-2-4

Suizhou Hubei 2020-1-24 Changzhou Jiangsu 2020-2-4

Huangshi Hubei 2020-1-24 Nantong Jiangsu 2020-2-4

Yichang Hubei 2020-1-24 Zhenjiang Jiangsu 2020-2-4

Jingmen Hubei 2020-1-24 Fuzhou Fujian 2020-2-4

Xianning Hubei 2020-1-24 Jingdezhen Jiangxi 2020-2-4

Shiyan Hubei 2020-1-24 Haikou Hainan 2020-2-5

Tianmen Hubei 2020-1-24 Sanya Hainan 2020-2-5

Qianjiang Hubei 2020-1-24 Kunming Yunnan 2020-2-5

Xiantao Hubei 2020-1-24 Qingdao Shandong 2020-2-5

Shennongjia Hubei 2020-1-27 Jinan Shandong 2020-2-5

Xiangyang Hubei 2020-1-28 Taian Shandong 2020-2-5

Household-based outdoor restrictions Rizhao Shandong 2020-2-5

Huanggang Hubei 2020-2-1 Nanchang Jiangxi 2020-2-5

Wenzhou Zhejiang 2020-2-2 Hefei Anhui 2020-2-5

Taizhou Zhejiang 2020-2-2 Nanning Guangxi 2020-2-5

Fangchenggang Guangxi 2020-2-2 Shijiazhuang Hebei 2020-2-5

Yulin Guangxi 2020-2-2 Yangzhou Jiangsu 2020-2-5

Xian Shaanxi 2020-2-2 Taizhou Jiangsu 2020-2-5

Bengbu Anhui 2020-2-3 Suqian Jiangsu 2020-2-5

Huaibei Anhui 2020-2-3 Yancheng Jiangsu 2020-2-5

Binzhou Shandong 2020-2-3 Liaoning Liaoning 2020-2-6

Hangzhou Zhejiang 2020-2-4 Jiangxi Liaoning 2020-2-6

Ezhou Hubei 2020-2-4 Jilin Jilin 2020-2-6

Fuzhou Fujian 2020-2-4 Maanshan Anhui 2020-2-6

Xuzhou Jiangsu 2020-2-4 Zhuhai Guangdong 2020-2-6

Jingdezhen Jiangxi 2020-2-4 Yaan Sichuan 2020-2-6

Harbin Heilongjiang 2020-2-4 Neijiang Sichuan 2020-2-6

Zhumadian Henan 2020-2-4 Suzhou Jiangsu 2020-2-6

Ningbo Zhejiang 2020-2-5 Hubei Hubei 2020-2-7

Taizhou Jiangsu 2020-2-5 Anhui Anhui 2020-2-7

Hefei Anhui 2020-2-5 Tianjin Tianjin 2020-2-7

Fuyang Anhui 2020-2-5 Guangzhou Guangdong 2020-2-7

Benxi Liaoning 2020-2-5 Shenzhen Guangdong 2020-2-7
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Covid-19 [21]. We collect the latitude and longitude data 
of cities from the “Chinese Research Data Services 
Platform5”, and use the data to calculate the distance 
of cities from Wuhan, by calculating the reciprocal of 
the calculated latitude and longitude distance and then 
determining the logarithm.

Urban Rail Transit

Rail transit is a main form transport in a modern 
city, carrying many people, including infected ones. As 
such, rail transit may exacerbate the spread of Covid-19 
[22]. We use the dummy variable of whether the city 
has an open rail transit system to measure urt. If the 
city has an open rail transit system at the end of 2019,  
urt = 1; if not, urt = 0. The rail transit data are collected 
from “Annual Statistics and Analysis Reports of Urban 
Rail Transit”. 

Demographic and Economic Indicators

In addition to biological and epidemiological factors, 
many social and economic criteria also control the 
spread of an epidemic. It is confirmed that Covid-19 
can spread from person to person so that cities with 
high population density are more likely to have early 

5	 China Research Data Service Platform, see https://www.
cnrds.com/.

outbreaks and accelerate the spread of Covid-19 [23]. 
To capture this, population density is set as a population 
count per square kilometer. Annual data for 2018 are 
collected from the “China City Statistical Yearbook 
(2019)”.

Economic development is measured using per capita 
GDP, and we hypothesize there is a negative correlation 
between the total number of Covid-19 cases and the per 
capita GDP. The level of medical service and public 
health services is higher in cities with better economic 
development, improving cities’ response and epidemic 
control capabilities [24]. Cities with a higher level 
of economic development also tend to have healthier 
residents [25]. Covid-19 mainly affects vulnerable 
people with underlying health conditions [26]. Data 
reflecting 2018 per capita GDP are collected from the 
“China City Statistical Yearbook (2019)”. 

Descriptive Statistics

Table 2 reports the descriptive statistics of the study 
data. The average Covid-19 cases of each city is 3.4 over 
the period with a maximum number of 424. There is 
an average of 536.77 km between the study cities and 
Wuhan; 12.8% have opened urban rail transit. There are 
significant variations in size and economic development 
level across cities, with the average population density 
ranging from 563.97 to 10,625.37 individuals per square 
kilometer, and the per capita GDP ranged from 22,071 
yuan to 179,513 yuan.

Liuzhou Guangxi 2020-2-5 Lanzhou Gansu 2020-2-7

Guilin Guangxi 2020-2-5 Chengdu Sichuan 2020-2-7

Hechi Guangxi 2020-2-5 Suining Sichuan 2020-2-7

Jiangxi Jiangxi 2020-2-6 Guangyuan Sichuan 2020-2-7

Xianyang Shaanxi 2020-2-6 Guiyang Guizhou 2020-2-7

Jinzhou Liaoning 2020-2-6 Tangshan Hebei 2020-2-7

Changchun Jilin 2020-2-6 Lianyungang Jiangsu 2020-2-7

Tangshan Hebei 2020-2-7 Ziyang Sichuan 2020-2-8

Tianjin Tianjin 2020-2-9 Foshan Guangdong 2020-2-8

Hubei Hubei 2020-2-16 Deyang Sichuan 2020-2-9

Enclosed community management Mianyang Sichuan 2020-2-9

Chongqing Chongqing 2020-1-31 Huizhou Guangdong 2020-2-9

Wuzhong Ningxia 2020-1-31 Dongguan Guangdong 2020-2-9

Yinchuan Ningxia 2020-1-31 Hanzhong Shaanxi 2020-2-9

Wenzhou Zhejiang 2020-2-2 Wuxi Jiangsu 2020-2-9

Huaian Jiangsu 2020-2-3 Beijing Beijing 2020-2-10

Hangzhou Zhejiang 2020-2-4 Shanghai Shanghai 2020-2-10

Ningbo Zhejiang 2020-2-4 Inner Mongol Inner Mongol 2020-2-12

Table 1. Continued.
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Fig. 4. Time trend of AQI.

Fig. 5. Time trend of MI index.

Fig. 6. Time trend of WC index.
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Each city experiences significant changes in air 
pollution during the study period. The average AQI 
index value is 58.97, with a minimum of 14.04 and a 
maximum of 261.91. For PM2.5 concentrations, the mean 
value is 38.86 ug/m3, with a minimum of 5.04 ug/m3 and 
a maximum of 213.79 ug/m3. For PM10 concentrations, 
the mean value is 51.78 ug/m3, with a minimum of 
8.37 ug/m3 and a maximum of 250.89 ug/m3. For SO2 
concentrations, the mean value is 8.98 ug/m3, with a 
minimum of 2.29 ug/m3 and a maximum of 54.38 ug/m3.
For NO2 concentrations, the mean value is 9.04 ug/m3, 
with a minimum of 2.46 ug/m3 and a maximum of  
39.13 ug/m3. For CO concentrations, the mean value 
is 0.82 mg/m3, with a minimum of 0.31 mg/m3 and 
a maximum of 2.60 mg/m3. For O3 concentrations, 
the mean value is 52.88 ug/m3, with a minimum of 
20.17ug/m3 and a maximum of 93.60 ug/m3.

The mean daily move-in migration index is 0.68, 
with a maximum of 17.72; the daily mean within-city 
migration index is 2.88, with a maximum of 8.88. 

The climate data show that the average daily 
temperature in the study cities for the study period is 
3.9ºC, with a maximum of 21.2ºC. The mean 24 h 
accumulated precipitation is 1.7 millimeters, 
with a maximum value of 33.9 millimeters. The 
average relative humidity is 4.974, with a maximum  
of 9.700.

Empirical Results

Effect of Lockdown on Covid-19

The incubation period of Covid-19 means that any 
impact of a lockdown is hysteretic (characterized by a lag 
period). Lauer et al. (2020) [27] find that Covid-19 has  
a 5.1-day average incubation period. As such, we apply  
a 5-day lag period to the lockdown policy variables.  
Table 3 provides the initial DID estimation results from 
Eq. (5) with Model (1)-(2), providing the estimated 
impact of the lockdown on Covid-19 cases for the 
nationwide sample without Wuhan. Model (1) only 
includes the lockdown variable. Model (2) adds the 
interaction term between lockdown and air pollution, 
based on Model (1). To increase the robustness of the 
empirical results, we also estimated the regression 
results of DID under the PPML method in Model (3) 
and Model (4). The results show that the estimation 
results of the OLS method and the PPML method are 
consistent. However, PPML yields better estimation 
results compared to OLS based on the R2 values. Given 
that, the subsequent analysis focus on the estimation 
results of PPML method.

The estimated lockdown coefficient in Model (3) 
indicates that the coefficient of CL×TIME is significantly 
negative, this indicates that the lockdown effectively 
reduces the spread of Covid-19, with a reduction of 

Table 2. Descriptive statistics of variables.

Abbreviation of the 
variable Observation Mean Std. Dev Minimum Maximum

INC 8224 3.400 15.343 0.000 424

CL 8224 0.463 0.499 0.000 1.000

lnAQI 8224 4.077 0.636 2.642 5.568

lnPM2.5 8224 3.660 0.774 1.618 5.365

lnPM10 8224 3.947 0.700 2.125 5.525

lnSO2 8224 2.196 0.677 0.829 3.996

lnNO2 8224 2.202 0.604 0.901 3.667

lnCO 8224 -0.193 0.431 -1.168 0.954

lnO3 8224 3.968 0.327 3.004 4.539

MI 8224 0.679 1.024 0.007 17.720

WC 8224 2.882 1.339 0.323 8.878

tem 8224 3.906 8.593 -18.700 21.200

pre 8224 1.743 5.439 0.000 33.900

humi 8224 4.974 1.764 2.100 9.700

lndis 8224 -1.803 0.115 -1.992 -1.278

urt 8224 0.128 0.335 0.000 1.000

lnrgdp 8224 11.126 0.488 10.002 12.098

lnpop 8224 7.990 0.657 6.335 9.271
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31.1% for newly confirmed cases across the study cities 
(excluding Wuhan). This result validates Hypothesis 1 
and is consistent with the result of Fang et al. (2020) [28]. 

An analysis of other control variables indicates 
that the coefficient of pre and humi are significantly 
negative. Increased precipitation levels make residents 
less willing to go outside and reduce social activities, 
also curbing the spread of Covid-19. High humidity 
conditions increase the size of aerosols and reduce the 
spread of viruses in the air. The regression coefficient of 
lndis is significantly positive, indicating that the spread 
of Covid-19 is more serious in cities closer to Wuhan. 
This finding is consistent with the results of Zhang et al. 
(2020) [16]. 

Having an open rail transit system significantly 
accelerates the spread of Covid-19, this finding is 
consistent with the results of Liu (2020) [22]. The 
coefficient of lnrgdp is significantly negative, which 
means that cities with higher economic levels have 
stronger ability to control the epidemic. This finding 
is consistent with the results of Pardhan and Drydakis 

(2021) [24]. The coefficient of lnpop is significantly 
positive, indicating that Covid-19 spread faster in cities 
with a higher population density. Finally, the regression 
results show that temperature has no significant effect 
on the spread of Covid-19.

The results of Model (4) in Table 3 show that the 
coefficient of CL×TIME×lnAQI is significantly positive. 
This indicates that the spread of Covid-19 is influenced 
by population movement, as well as the air pollution 
levels during lockdown. The lockdowns have a weaker 
effect on the spread of Covid-19 in cities with higher 
levels of air pollution. In other words, lockdowns have 
a stronger impact on pollution in cities with low air 
pollution levels. This may be because while lockdown 
blocks population movement between cities and 
within a city, some outdoor activities continue despite 
the lockdown. When the air pollution in the city is 
severe, these outdoor activities aggravate the spread of 
Covid-19.

To assess the robustness of the estimated results, we 
conduct a regression analysis on the nationwide sample 

Table 3. Estimation results of the DID model.

Variable 
Nationwide sample without Wuhan Nationwide sample without cities in Hubei province

Model (1)
OLS

Model (2)
OLS

Model (3)
PPML

Model (4)
PPML

Model (5)
OLS

Model (6)
OLS

Model (7)
PPML

Model (8)
PPML

CL×TIME -0.500***

(-11.48)
-0.336***

(-7.32)
-0.311***

(-3.94)
-0.273***

(-3.53)
-0.600***

(-14.11)
-0.484***

(-10.25)
-1.058***

(-12.89)
-0.938***

(-10.12)

lnAQI 0.100**

(5.28)
0.150**

(3.47)
0.096***

(5.28)
0.128***

(3.59)

CL×TIME×lnAQI 0.294***

(7.66)
0.390***

(5.10)
0.168***

(3.91)
0.220***

(2.72)

tem -0.004
(-0.94)

-0.011***

(-2.74)
0.008
(-0.78)

-0.001
(-0.07)

-0.007*

(-1.62)
-0.012***

(-2.99)
-0.001
(-0.22)

-0.006
(-0.81)

pre -0.011***

(-4.32)
-0.005*

(-1.96)
-0.026***

(-4.38)
-0.016***

(-2.65)
-0.009***

(-3.77)
-0.005*

(-1.75)
-0.025***

(-5.13)
-0.018**

(-3.72)

humi -0.002
(-0.16)

0.004
(0.38)

-0.063**

(-2.06)
-0.076**

(-2.67)
0.010
(0.98)

0.017
(1.64)

-0.033*

(-1.68)
-0.025
(-1.27)

lndis 2.352***

(5.93)
2.425***

(6.01)
1.913***

(5.01)
2.204***

(5.76)
2.978***

(4.98)
2.868***

(4.76)
6.291***

(7.68)
6.144***

(7.50)

urt 0.780***

(11.26)
0.794***

(11.32)
1.641***

(14.41)
1.672***

(15.80)
0.787***

(11.18)
0.793***

(11.19)
1.575***

(15.17)
1.580***

(15.18)

lnrgdp -0.008
(-0.14)

-0.007
(-0.12)

-0.380***

(-3.30)
-0.383***

(-3.87)
0.018
(0.31)

0.020
(0.35)

-0.097
(-1.06)

-0.100
(-1.08)

lnpop 0.082**

(2.05)
0.071*

(1.77)
0.234***

(3.01)
0.213***

(2.77)
0.081*

(1.94)
0.068
(1.63)

0.211***

(4.16)
0.183***

(3.58)

constant 5.442***

(5.33)
5.516***

(5.35)
8.237***

(4.80)
8.992***

(6.02)
6.266***

(4.82)
5.996***

(4.57)
11.380***

(7.74)
11.354***

(7.68)
Month fixed Y Y Y Y Y Y Y Y
Week fixed Y Y Y Y Y Y Y Y

Province fixed Y Y Y Y Y Y Y Y
R2 0.072 0.109 0.654 0.674 0.105 0.122 0.336 0.340
N 3359 3359 6939 6939 3090 3090 6669 6669

Notes: *, **, *** represent significance levels of 10%, 5% and 1%, respectively. The z value of the coefficient is in parentheses.
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without cities in Hubei province (Models (5)-(8)). The 
coefficient of CL×TIME is significantly negative in 
Model (7), as is the coefficient of CL×TIME×lnAQI 
in Model (8). These results are consistent with 
the regression results of Model (3) and Model (4) 
respectively, and validate the robustness of the estimated 
results.

To ensure the robustness of the DID model results, 
we apply a parallel trend test (see Fig. 7). If the 
confirmed Covid-19 case counts are different between 
cities that do and do not implement lockdown measures 
(the treatment group and control group, respectively) 
before the lockdown began, then changes in Covid-19 
risk are likely caused by the systematic differences 
between the cities, rather than the lockdown itself. In 
fact, we find no significant difference in the number of 
newly confirmed Covid-19 cases between cities in the 
treatment group and control group before the lockdown 
began. Hence, the lockdown does appear to be the factor 
leading to differences in the number of newly confirmed 
Covid-19 cases between cities in the treatment and 
control groups. In other words, the results of the DID 
estimation conform to the parallel trend assumption.

Effect of Air Pollution on Covid-19

Baseline Regression Results

Table 4 reports the results of the impact of air 
pollution on the spread of Covid-19. Model (1) and 
Model (2) represent the estimated results based on 
OLS and PPML, respectively. PPML yields better 
estimation results compared to OLS based on the R2 
values. Given that, the subsequent analysis focus on the 
estimation results of Model (2). The coefficient of lnAQI 
is positively significant, indicating that air pollution 
accelerates the spread of Covid-19. This finding is 

consistent with the results of Wu et al. (2020) [8], Fareed 
et al. (2020) [9], Bashir et al. (2020) [10], and Cole et 
al. (2020b) [11]. The result validates Hypothesis 2. 
The additional increase of air pollutants in cities with 
already high air pollution levels increases the spread of 
Covid-19. Calculating the marginal effects indicates that 
an increase of one unit of AQI is associated with 1.723 
more newly confirmed Covid-19 cases.

To ensure the stability of the results, we conduct a 
regression analysis on the nationwide sample without 
cities in Hubei province (Model (3) and Model (4)) and 
on the Hubei province sample without Wuhan (Model 
(5) and Model (6)). The estimated results of Model (4) 
and Model (6) indicate that the effects of air pollution 
on Covid-19 are also significantly positive, higher levels 
of air pollution accelerates the spread of Covid-19. This 
effect is the most significant in cities in Hubei province 
without including Wuhan.

Taking into account the endogenous problem of air 
pollution and Covid-19, we use instrumental variable 
(IV) to solve it. Hering and Poncet (2014) [29] use air 
velocity as an instrumental variable for air pollution, 
based on the fact that the higher the wind speed, the 
better the horizontal diffusion conditions of pollutants, 
and the higher the mixed layer, the better the vertical 
diffusion conditions of pollutants. We refer to this idea 
and use wind speed as an instrumental variable for air 
pollution, and use the two-stage least squares (2SLS) 
method to estimate the parameters. Regarding wind 
speed as a control variable, firstly, the higher the wind 
speed, the more conducive to the lateral diffusion of 
pollutants and meeting the correlation requirements 
of instrumental variables; secondly, as natural 
meteorological conditions, it satisfies the exogenous 
requirements. The 2SLS regression results in Table 5 
indicate that F statistics in Model (1) and Model (2) are 
both significantly greater than 10, indicating no weak 
IV problem. This shows the effectiveness of IV, and the 
2SLS regression results are consistent with the baseline 
regression in Table 4. In conclusion, these tests confirm 
that air pollution has a significant positive effect on 
Covid-19.

Panel Quantile Regression Results

Table 6 reports the panel quantile regression 
estimations based on Eq. (24). The estimation results of 
Model (1)-(5) correspond to the quantile values of 0.1, 
0.3, 0.5, 0.7, and 0.9, respectively. The results show that 
the coefficients of lnAQI are all significantly positive, 
and continue to increase as the quantile value increases. 
The public health care system is overburdened in 
cities with a severe epidemic. And in these cities, the 
epidemic is more susceptible to air pollution, which 
leads to faster spread of Covid-19. Meanwhile, the 
effects of temperature and precipitation on Covid-19 are 
consistently negative across quantiles, and the effects 
of the distance from Wuhan and urban rail transit on 
Covid-19 are consistently positive. Higher temperatures 

Fig. 7. Parallel trend test.
Notes: cl0 is the day when the lockdown starts to be implemented; 
cl_1, cl_2, and cl_3 represent the first day, the second day, and 
the third day before lockdown, respectively; cl1, cl2, cl3, and 
cl4 represent the first day, the second day, the third day and the 
fourth day after lockdown, respectively.
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harm the virus, and heavy precipitation leads to fewer 
outdoor activities, both help curb the spread of Covid-19. 
Finally, the epidemic is more severe in cities that are 
closer to Wuhan and have a better traffic system. Cities 
with more severe epidemics will cause these factors 
to have a more significant impact on the spread of 
Covid-19.

Heterogeneity Analysis

First, we analyze the heterogeneity of air pollutants. 
To further examine which kind of air pollutant influence 
the spread of Covid-19, the six air pollutants are used  
as key independent variables to generate estimates.  
Table 7 shows the results. The variable lnAIR 
incorporates lnPM2.5, lnPM10, lnSO2, lnNO2, lnCO, and 
lnO3. The results indicate that the coefficients of lnPM2.5, 
lnPM10, lnNO2, lnCO, and lnO3 are all significantly 
positive. That is, PM2.5, PM10, NO2, CO, and O3 all 
increase the spread of Covid-19. The effects of PM2.5 and 
O3 are more significant than other pollutants, suggesting 
that exposure to these may raise the risk of infection 
with Covid-19. This is because exposure to air pollutants 

Table 4. Result of OLS and PPML estimator.

Variable
Nationwide sample without Wuhan Nationwide sample without cities in 

Hubei province
Hubei province sample without 

Wuhan
Model (1)

OLS
Model (2)

PPML
Model (3)

OLS
Model (4)

PPML
Model (5)

OLS
Model (6)

PPML

lnAQI 0.202***

(7.14)
0.423***

(4.44)
0.175***

(6.35)
0.178***

(3.19)
0.684***

(4.53)
0.658***

(4.57)

tem -0.023***

(-5.60)
-0.020*

(-1.78)
-0.027***

(-6.79)
-0.031***

(-4.63)
0.005
(0.17)

-0.011
(-0.44)

pre -0.009***

(-3.41)
-0.026***

(-3.82)
-0.007***

(-2.95)
-0.022***

(-5.01)
-0.041**

(-2.68)
-0.039**

(-3.05)

humi 0.014
(1.31)

-0.036
(-1.24)

0.021**

(2.00)
-0.027
(-1.31)

-0.137**

(-2.27)
-0.097
(-1.62)

lndis 2.343***

(6.09)
2.135***

(5.40)
2.692***

(4.58)
6.283***

(7.63)
1.651***

(3.43)
1.766***

(4.14)

urt 0.645***

(9.66)
1.580***

(14.45)
0.636***

(9.26)
1.423***

(13.71) - -

lnrgdp -0.015
(-0.27)

-0.373***

(-3.44)
0.009
(0.16)

-0.090
(-0.97)

-0.809***

(-3.02)
-0.644***

(-3.58)

lnpop 0.064
(1.63)

0.221***

(2.78)
0.064
(1.55)

0.184***

(3.61)
-0.020
(-0.14)

0.235*

(1.89)

constant 4.592***

(4.59)
6.461***

(4.26)
5.059***

(3.92)
10.716***

(7.00)
12.369***

(3.32)
9.536***

(3.69)

Month fixed Y Y Y Y Y Y

Week fixed Y Y Y Y Y Y

Province fixed Y Y Y Y N N

R2 0.037 0.629 0.042 0.293 0.137 0.370

N 3618 8224 3332 7904 286 320

Notes: Besides Wuhan, the other cities in Hubei province have not opened rail transit yet, thus this variable is removed from regression 
automatically. *, **, *** represent significance levels of 10%, 5% and 1%, respectively. The z value of the coefficient is in parentheses.

Table 5. 2SLS regression results.

Variable Model (1)
OLS

Model (2)
PPML

lnAQI 0.485***

(3.69)
0.500*

(1.72)

tem -0.037***

(-6.54)
-0.022
(-1.65)

pre -0.001
(-0.31)

-0.017*

(-1.74)

humi 0.026**

(2.10)
-0.046
(-1.26)

Month fixed Y Y

Week fixed Y Y

Province fixed Y Y

F test 177.250*** 22.80***

N 3612 8224

Notes: The results of Table 5 are based on the nationwide 
sample without Wuhan. *, **, *** represent significance 
levels of 10%, 5% and 1%, respectively. The z value of 
the coefficient is in parentheses. lndis, urt, lnrgdp, lnpop 
variables are removed from regression automatically.
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PM2.5 and O3 is related to human respiratory diseases. 
PM2.5 may provide a good platform to carry the Covid-19 
virus during atmospheric transportation [30]. And due 
to its small size, PM2.5 easily penetrate into the lower 
respiratory tract and bring the virus directly into the 
alveolar and tracheobronchial regions [7, 31]. Ground-
level O3 can exacerbate chronic respiratory diseases and 
cause a short-term decline in lung function [32]. The 
coefficient of lnSO2 is not significant, indicating it do 
not significantly impact the spread of Covid-19.

Second, we analyze the heterogeneity of cities with 
different population sizes. Table 8 shows the results. The 
effects of air pollution on the spread of Covid-19 diminish 
as the population size increases. Air pollution levels has 
a more significant effect on the spread of Covid-19 in 
small and medium-sized cities compared to big cities. 
This is because the urban governance capability of 
small and medium-sized cities is generally less adequate 
than larger cities; the management capability of local 
governments and the response capability of residents 
are relatively weak; and people in these cities are more 
likely to be exposed to outdoor activities. Big cities 
have a larger population and generally more severe air 
pollution, however, they also generally have a stronger 
management capability, and local governments and 
resident in big cities are more sensitive to Covid-19. 
Residents in big cities reduce outdoor activities during 
lockdown, and population movement within cities 
is strictly restricted. This lowers the probability of 

exposure to outdoor activities. Thus, the significance of 
air pollution on the spread of Covid-19 is lower in big 
cities than in small and medium-sized cities.

Mechanism Analysis of Lockdown 
on Covid-19

We further explore the mechanism by which the 
lockdown impacts Covid-19, to examine whether 
lockdown can curb the spread of Covid-19 by reducing 
air pollution and population movement between and 
within cities. As described above, lnAQI, MI, and WC 
as the mediating variables. Due to the incubation period 
of Covid-19, floating populations may not immediately 
show symptoms after arriving in a city, and there is a 
time interval between isolation, nucleic acid testing, 
and confirmation. Thus, there is a lag in the effect of 
population movement on Covid-19. We process both MI 
and WC with a lag time of 5 days to obtain variables 
MI_5 and WC_5. In other words, population migration 
data on 15 January 2020 correspond to confirmed cases 
on 20 January 2020. The same lag is applied throughout 
the study period. 

We follow the conditional verification step settings 
used by Baron and Kenny (1986) [33] as follows:

First, we set CL×TIME as an independent variable 
and lnAQI, MI, and WC as dependent variables. We 
establish three econometric models for estimation. 
Significant estimation coefficients of CL×TIME in the 

Table 6. Panel quantile regression results.

Variable Model (1)
Q.1

Model (2)
Q.3

Model (3)
Q.5

Model (4)
Q.7

Model (5)
Q.9

lnAQI 0.141***

(3.09)
0.157***

(4.53)
0.182***

(6.48)
0.203***

(5.58)
0.230***

(4.07)

tem -0.011*

(-1.80)
-0.013***

(-2.87)
-0.017***

(-4.50)
-0.020***

(-4.12)
-0.024***

(-3.17)

pre -0.009**

(-2.18)
-0.009***

(-2.92)
-0.010***

(-3.73)
-0.010***

(-2.95)
-0.010*

(-1.96)

humi -0.025
(-1.46)

-0.011
(-0.84)

0.010
(0.97)

0.029**

(2.11)
0.052**

(2.46)

lndis 1.665***

(3.64)
1.930***

(5.54)
2.331***

(8.25)
2.684***

(7.33)
3.130***

(5.49)

urt 0.387***

(5.25)
0.487***

(8.63)
0.638***

(13.85)
0.772***

(13.00)
0.940***

(10.20)

lnrgdp -0.037
(-0.63)

-0.035
(-0.80)

-0.033
(-0.93)

-0.031
(-0.68)

-0.029
(-0.41)

lnpop 0.053
(1.28)

0.057*

(1.78)
0.062**

(2.40)
0.066**

(1.98)
0.072
(1.38)

Month fixed Y Y Y Y Y

Week fixed Y Y Y Y Y

Province fixed Y Y Y Y Y

N 3618 3618 3618 3618 3618

Notes: The results of Table 6 are based on the nationwide sample without Wuhan. *, **, *** represent significance levels of 10%, 
5% and 1%, respectively. The z value of the coefficient is in parentheses.
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the second step tests whether lnAQI, MI, and WC affect 
INC.

0 1
1

2 3ln +
n

it it j jit i t it
j

it itAQI Z v uINC MI WCα α λ εα α
=

= + + + + ++ ∑
          

(10)

Third, if the results of the above steps are both 
true, we further use CL×TIME, lnAQI, MI, and WC 
as independent variables at the same time. The variable 
INC serves as the dependent variable for regression 
analysis. If there is a decrease or a significant decrease 
in the coefficient of CL×TIME, it indicates that the 
effect of CL×TIME on INC is partly or entirely from 
the mediation effects of lnAQI, MI, and WC. That is, the 
third step tests whether CL×TIME, lnAQI, MI, and WC 
affect INC at the same time. The test formula used is as 
follows:

0 2
1

1 3 4ln
n

it it j jit i t it
j

it it it itAQI Z v uINC CL TIME MI WCα α α λ εα α
=

= + + + + + +× + + ∑

0 2
1

1 3 4ln
n

it it j jit i t it
j

it it it itAQI Z v uINC CL TIME MI WCα α α λ εα α
=

= + + + + + +× + + ∑
         (11)

Table 7. Pollutant heterogeneity analysis results.

Variable Model (1)
PM2.5

Model (2)
PM10

Model (3)
SO2

Model (4)
NO2

Model (5)
CO

Model (6)
O3

lnAIR 0.403***

(5.14)
0.295***

(3.28)
-0.003
(-0.04)

0.237***

(2.81)
0.181*

(1.78)
0.814***

(5.52)

tem -0.023**

(-2.05)
-0.017
(-1.54)

-0.011
(-1.12)

-0.005
(-0.42)

-0.015
(-1.39)

-0.006
(-0.63)

pre -0.023***

(-3.52)
-0.028***

(-4.08)
-0.034***

(-5.16)
-0.037***

(-5.50)
-0.033***

(-4.93)
-0.037***

(-5.66)

humi -0.027
(-0.90)

-0.045
(-1.55)

-0.046
(-1.54)

-0.051*

(-1.73)
-0.036
(-1.18)

-0.145***

(-4.51)

lndis 2.149***

(5.50)
2.026***

(5.20)
1.959***

(5.00)
2.143***

(5.80)
1.901***

(4.93)
1.998***

(5.03)

urt 1.575***

(14.50)
1.608***

(14.70)
1.570***

(13.87)
1.535***

(13.66)
1.581***

(13.78)
1.528***

(13.77)

lnrgdp -0.370***

(-3.45)
-0.386***

(-3.41)
-0.368***

(-3.14)
-0.239**

(-1.87)
-0.377***

(-3.23)
-0.320***

(-2.80)

lnpop 0.226***

(2.87)
0.200**

(2.47)
0.240***

(3.04)
0.271***

(3.42)
0.240***

(3.05)
0.211***

(2.61)

constant 6.800***

(4.35)
7.370***

(4.54)
7.891***

(4.54)
5.907***

(2.98)
7.895***

(4.57)
4.807***

(2.92)

Month fixed Y Y Y Y Y Y

Week fixed Y Y Y Y Y Y

Province fixed Y Y Y Y Y Y

R2 0.632 0.626 0.622 0.624 0.622 0.630

N 8224 8224 8224 8224 8224 8224

Notes: The results of Table 7 are based on PPML model and nationwide sample without Wuhan. AIR in model (1)-(6) represents 
PM2.5, PM10, SO2, NO2, CO and O3 respectively. *, **, *** represent significance levels of 10%, 5% and 1%, respectively. 
The z value of the coefficient is in parentheses.

three models indicate that lockdown does impact air 
pollution and population movement. The first step is to 
test whether CL×TIME affects lnAQI, MI, and WC.
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= + + + + +× ∑
 (9)

where the explanation of the other variables is consistent 
with Eq. (5) and Eq. (6).

Second, we further set lnAQI, MI, and WC as 
independent variables, and INC as a dependent variable 
for regression analysis. Significant coefficients of lnAQI, 
MI, and WC indicate that air pollution and population 
movement affect the spread of Covid-19. In other words, 
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Table 9 shows the results of mediating mechanism 
between lockdown and the spread of Covid-19. Model 
(1)-(3) represent the results of the first step. The 
coefficients of CL×TIME are all significantly negative, 
indicating that lockdown reduces air pollution by 10.0%, 
and reduces the daily move-in migration index and 
daily within-city migration index by 23.9% and 18.8%, 
respectively. 

Model (4) is the result of the second step. The 
coefficients of lnAQI, MI, and WC are all significantly 
positive, indicating that air pollution, daily move-in 
migration, and daily within-city migration all exacerbate 
the spread of Covid-19. In other words, decreasing the 
air pollution and the daily move-in and daily within-city 
migration help reduce the spread of Covid-19. 

Model (5) is the result of the third step. After we 
introduce variables, including CL×TIME, lnAQI, MI, 
and WC into the model at the same time, the coefficient 
of CL×TIME becomes insignificant (in comparison 
with Model (6)). This indicates that that lockdown 
curbs the spread of Covid-19 by reducing air pollution, 

and decreasing daily move-in and daily within-city 
migration.

Discussion and Conclusion

The outbreak of Covid-19 at the end of 2019 became 
a black swan event, significantly threatening human 
health, economic development, and social stability. 
Epidemic prevention measures, such as lockdown, have 
also plunged many small and medium-sized enterprises 
into crisis [34]. Epidemic outbreaks, such as Covid-19, 
relate closely to our ecosystem and human activities.  
The spread of Covid-19 is also influenced by many 
factors involving the economy and public policy. 
China has a vast territory, many cities with diverse 
features, intricate transportation networks, and large-
scale population movements. As such, the spread of 
Covid-19 in China exhibits both temporal and spatial 
characteristics. The central and local governments take 
active response measures, keeping the situation stable 

Table 8. Heterogeneity analysis results of different city sizes.

Variable 
Model (1)

Small-sized City
(Population<0.5Million)

Model (2)
Median-sized City

(0.5Million≤Population <1Million)

Model (3)
Big City

(Population≥1Million)

lnAQI 0.988**

(2.52)
0.785***

(4.90)
0.150
(1.63)

tem 0.013
(0.29)

-0.047*

(-1.80)
-0.017*

(-1.66)

pre -0.067
(-1.35)

-0.019*

(-1.77)
-0.029***

(-3.95)

humi -0.112
(-0.96)

-0.103*

(-1.77)
-0.030
(-0.94)

lndis -7.343
(-0.46)

2.975***

(2.94)
1.236***

(2.80)

urt - - 1.237***

(11.20)

lnrgdp -2.018**

(-2.37)
-0.300
(-1.57)

-0.144
(-1.24)

lnpop 0.076
(0.07)

0.116
(0.89)

0.193*

(1.85)

constant 12.319
(0.50)

7.481***

(3.92)
3.466*

(1.83)

Month fixed Y Y Y

Week fixed Y Y Y

Province fixed Y Y Y

R2 0.854 0.756 0.483

N 736 2560 4896

Notes: The results of Table 8 are based on the PPLM model and nationwide sample without Wuhan. The division of city size is based 
on “Notice on the adjustment of the standards for the division of city size (2014)”. Under the new standards, cities with a population 
under 500,000 are defined as “small-sized cities”, cities with a population between 500,000 and 1,000,000 are defined as “median-
sized cities”, cities with a population of more than 1,000,000 are defined as “big cities”. As cities in Model (1) and Model (2) do not 
open rail transit lines, thus, urt is removed from regression. *, **, *** represent significance levels of 10%, 5% and 1%, respectively. 
The z value of the coefficient is in parentheses.
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and controllable in a short amount of time. In this context, 
a scientific evaluation and summary of the factors 
influencing Covid-19 and the effects of implementing 
lockdown can provide an important reference for future 
epidemic prevention and urban governance. We discuss 
the correlation between lockdown policy, air pollution 
and the spread of Covid-19. The main mechanism of the 
lockdown policy affecting the spread of Covid-19 was 
discussed.

Actually, the existing literature has expanded on the 
relationship between lockdown and the transmission 
of Covid-19, which can be broadly classified into four 
categories.

The first is to give a qualitative judgment by directly 
comparing the case data before and after lockdown. 
Typical examples such as Haider et al. (2020) [35] 
summarize the design, timing and specific measures of 
lockdown measures in nine countries in sub-Saharan 
Africa. By comparing the case data before and after the 

implementation of the lockdown policy, it is pointed out 
that the lockdown policy actually has a limited role in 
curbing the spread of Covid-19 in these countries due to 
limited average living space and shared health facilities.

The second is to simulate the impact of urban 
lockdowns by using mathematical models (e.g. SIR 
class models) and relying on existing data to estimate 
model parameters. For example, Alrashed et al. (2020) 
[36] and Fu et al. (2021) [37] set the relevant parameters 
of the extended SIR model according to the spread of 
Covid-19 data in Saudi Arabia and the UK respectively, 
and simulated the evolution of the spread of Covid-19 
after the implementation of the lockdown policy, which 
proved the important role of lockdown in inhibiting the 
spread of Covid-19.

The third is the conventional linear regression 
model. This type of model is mainly used to analyze 
the impact of certain social and economic factors on 
the spread of Covid-19. The evaluation of the impact  

Table 9. Estimation result of the mechanism analysis.

Variable Model (1)
lnAQI

Model (2)
MI

Model (3)
WC

Model (4)
INC

Model (5)
INC

Model (6)
INC

CL×TIME -0.100***

(-6.23)
-0.239***

(-9.41)
-0.188***

(-5.77)
0.032
(0.75)

-0.143***

(-3.51)

lnAQI 0.074**

(2.55)
0.074**

(2.54)

MI_5 0.156***

(11.76)
0.156***

(11.79)

WC_5 0.044***

(3.23)
0.048***

(3.31)

tem 0.019***

(13.32)
0.011***

(4.75)
0.027***

(9.44)
-0.010***

(-2.59)
-0.010***

(-2.60)
-0.014***

(-3.41)

pre -0.029***

(-27.20)
-0.004**

(-2.14)
-0.004
(-1.63)

-0.009***

(-3.30)
-0.008***

(-3.29)
-0.014***

(-5.57)

humi -0.060***

(-16.19)
-0.028**

(-4.78)
-0.029***

(-3.84)
0.004
(0.34)

0.004
(0.35)

0.003
(0.33)

lndis 0.360***

(3.10)
0.814***

(4.42)
-0.381
(-1.62)

2.206***

(9.77)
2.208***

(9.77)
2.352***

(10.10)

urt -0.002
(-0.09)

1.206***

(39.02)
-0.728***

(-18.43)
0.435***

(8.73)
0.428***

(8.45)
0.677***

(14.89)

lnrgdp 0.011
(0.79)

0.057**

(2.57)
-0.361***

(-12.67)
0.004
(0.11)

0.006
(0.15)

-0.032
(-0.86)

lnpop 0.057***

(5.78)
0.110**

(7.06)
-0.007
(-0.35)

0.018
(0.65)

0.017
(0.64)

0.073***

(2.64)

constant 5.071***

(17.97)
3.637***

(8.13)
7.444***

(13.02)
3.963***

(6.12)
3.930***

(6.06)
5.719***

(8.86)

Month fixed Y Y Y Y Y Y

Week fixed Y Y Y Y Y Y

Province fixed Y Y Y Y Y Y

R2 0.231 0.405 0.460 0.178 0.178 0.122

N 8224 8224 8224 3618 3618 3618

Notes: The results of Table 9 are based on the nationwide sample without Wuhan. *, **, *** represent significance levels of 10%, 
5% and 1%, respectively. The z value of the coefficient is in parentheses.



Fan J., et al.4572

of lockdown on the spread of Covid-19 is mainly done by 
comparing the model structure and estimator estimated 
at different time points. Kharroubi and Saleh (2020) [38] 
used a Poisson regression model to estimate the changes 
in new cases before and after the implementation of 
the lockdown policy based on Lebanon’s new case 
data. Bourdin et al. (2020) [39] established the spatial 
autoregressive model and used the cross-sectional data 
at three time points after the implementation of the 
lockdown policy for regression. It was found that after 
the implementation of the lockdown policy, the spatial 
autoregressive coefficient gradually decreased, which 
proved that the lockdown policy did slow down the 
spread of Covid-19.

The fourth is the policy evaluation linear regression 
model (e.g., DID class model). Its basic logic is to use 
the time inconsistency of each city’s implementation of 
the closure policy and divide each city into the control 
group and the treatment group before and after the 
policy treatment through the setting of dummy variables. 
Construct a quasi-natural experimental model to judge 
the quality of a policy. For example, Fang et al. (2020) 
[28] used the DID method to estimate the impact of the 
lockdown policy on three types of population movements: 
between cities, within the city, and out of the city. 
They find that the lockdown reduced the three types of 
population movements in Wuhan by more than 50%.

In summary, although the analysis method are 
different, the first and third types of literature are more 
inclined toward comparative research. Both of them can 
validate the importance of the lockdown policy, but they 
cannot quantitatively give the specific impact intensity 
of the lockdown policy. The core purpose of the second 
type of literature is to predict the impact of policies 
such as lockdown, which helps to form the intuition of 
policy effects but is not suitable for ex-post evaluation of 
policy because its evaluation uses simulation rather than 
real data after all. The fourth type of literature is most 
suitable for evaluating specific policies. However, such 
a framework is more commonly used in analyzing the 
changes in the associated elements (rather than Covid-19 
itself) that the lockdown may lead to. For example, 
Fang et al. (2020) [28] and He et al. (2020) [4] discussed 
the effects of lockdown on population mobility and 
air pollution, respectively. One possible reason for 
the limited use of the framework (on the relationship 
between lockdown and Covid-19) is that there may be a 
large number of zero values in the dependent variables 
(i.e., Covid-19 transmission indicators), which leads to 
a biased estimation problem. Zhang et al. (2020) [16] 
indicates that PPML estimator should be used to solve 
such problems.

This paper explores the impact of the lockdown 
on Covid-19 from the perspective of its impact on air 
pollution and population mobility. First, we establish 
an extended SIR model that incorporates the effects of 
lockdown and air pollution to help us establish research 
intuition, analyze the theoretical mechanism of how 
lockdown affects Covid-19, and propose hypotheses. 

Secondly, we use the DID model to empirically 
estimate the impact of lockdown on the spread of 
Covid-19. Third, we establish a linear regression model 
to empirically estimate the impact of air pollution on 
Covid-19. We further used the panel quantile model and 
grouping regression to analyze the heterogeneity of the 
impact of air pollution on Covid-19 from the perspective 
of different Covid-19 intensities, different air pollutants 
and different city sizes. After verifying the impact of air 
pollution on Covid-19, we find that air pollution is likely 
to also be an important mechanism for the lockdown to 
affect the spread of Covid-19. Therefore, we discuss it 
as a mechanism variable at the same time as population 
mobility and analyze how the lockdown affects the 
spread of Covid-19 by changing population mobility and 
air pollution.

Similar to most of the previous literature, the 
results of this study demonstrate that lockdown could 
effectively suppress the spread of Covid-19 while air 
pollution would accelerate the spread of Covid-19. 
Specifically, based on the regression results, this paper 
finds that the implementation of the lockdown policy 
in Wuhan and the whole country has reduced the 
number of new confirmed cases by an average of 31.1% 
(excluding Wuhan), while the air quality index increases 
by 1.723 new confirmed cases per unit.

Furthermore, this research makes the following 
findings through mechanism verification and 
heterogeneity analysis.

First of all, we find that in addition to population 
mobility, air pollution is also an important mechanism 
variable for blocking the spread of Covid-19, that is, 
Covid-19 can be suppressed by reducing air pollution 
(Table 9), which complements the conclusions of Fang 
et al. (2020) [28] and Zhu et al. (2020) [40]. Moreover, 
according to Table 3, when air pollution levels are high, 
the ability of the lockdown to suppress the spread of 
Covid-19 would be greatly weakened. On the whole, 
if the air pollution in the city is caused by the regular 
production and operation activities within the city 
(that is, they can be suspended after the lockdown), 
the ability of the lockdown to suppress the spread of 
Covid-19 is less affected by air pollution. However, if 
the air pollution in the city is exogenous or generated 
by the basic functioning of the city, such as atmospheric 
transmission, fossil energy heating, etc., the effect of 
lockdown may be relatively poor.

Second, considering that the relationship between 
multiple pollutants and Covid-19 is still controversial 
[41], we verify the influence of PM2.5, PM10, SO2, NO2, 
CO and O3 on the spread of Covid-19. We find that, all 
air pollutants accelerate the spread of Covid-19 except 
SO2, which is basically consistent with the results of Zhu 
et al. (2020) [40]. But our results imply PM2.5 and O3 
have greater effects than other pollutants.

Third, we also find that the impact of air pollution on 
Covid-19 transmission decreases with population size, 
and its impact is more significant in small and medium-
sized cities than in large cities (Table 8). At the same 
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time, the conclusion of this paper shows that population 
density has an important impact on the spread of 
Covid-19 (Table 4), which is similar with Bourdin et al. 
(2020) [39]. Moreover, our regression results suggest 
that the larger the population size, the greater the impact 
of population density on Covid-19 transmission (Table 
8). In our opinion, the possible reason is that although 
cities with different population sizes may have similar 
population density, the public facilities of cities with 
larger population sizes serve more people, which 
leads to close social distance and an increased risk 
of infection [42]; accordingly, the role of population 
density is more significant. For small and medium-sized 
cities, with the reduction of close-contact scenes, the 
role of air pollutants as virus transmission media would 
be relatively more important.

Fourth, according to the results of panel quantile 
regression, we also find that the impact of air pollution 
on Covid-19 transmission is related to the severity 
of Covid-19 itself. The more serious the epidemic, 
the stronger air pollution’s accelerating effect on 
transmission. The reason could be that more sources of 
infection exist in severe epidemics, the air pollutants 
are more likely to “load the virus” during the flow 
process, causing the virus to spread even more quickly. 
Corresponding with our extended SIR model or other 
comparable models [36, 37] in existing literature, more 
infected cases and more serious air pollution indicate 
that the actual contact rate value is higher, meaning that 
there is a greater risk of infection in the community.

The analysis above highlights three policy 
recommendations.

In the first place, the impacts of the lockdown 
might be minimal in cities with significant levels of air 
pollution. Spraying disinfectants on a large scale is a 
reasonably practical response to reduce virus survival 
among air pollutants if a direct reduction in air pollution 
level is hard to achieve by mere lockdown policy.

In another, between cities with large populations 
and cities with small to medium-sized populations, 
there are certain distinctions in the prevention and 
control priorities. The former primarily emphasizes 
scenarios that involve reducing population density and 
introducing measures like online work and staggered 
work to disperse population mobility, and the necessity 
of lockdown is relatively high; however, cities with 
small and medium-sized populations have fewer 
close-contact scenes, and the government can focus 
more on minimizing air pollution or reducing virus 
survival among air pollutants. It can selectively impose 
restrictions in particular locations with heavy foot traffic 
as an alternative to mass lockdown.

What is more, monitoring air pollution should be an 
important aspect of prevention and control work in cities 
with more infected people and new illnesses. Residents’ 
flow should be strictly restricted in regions with severe 
pollution. Air filtering facilities or daily disinfection 
should be provided for specific locations where the 
human mobility is difficult to control.

This paper tried to provide supporting evidence on 
the impact of city lockdown and air pollution on the 
spread of Covid-19 in China. However, there are many 
complex unknown factors that often hinder a definitive 
assessment of the role of city lockdown and air pollution 
in the spread of Covid-19. For example, staying indoors 
for a long time and reducing interpersonal interaction 
can lead to anxiety behaviors and stress disorders, as 
well as increase the risk of indoor air pollution [43]. 
Due to the availability of indoor air pollution data, we 
only consider the impact of outdoor air pollution on 
the spread of Covid-19. The AQI and the 6 types of 
air pollutants used in this paper measure outdoor air 
pollution levels. In future research, if we can obtain 
indoor pollution levels, we can consider the impact of 
outdoor air pollution and indoor air pollution on the 
spread of Covid-19 at the same time. This will make our 
research more comprehensive.
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Theoretical Model

We apply the extended SIR model used by Robert 
(2020) and Chudik et al. (2020) to contain the variable 
of death and to account for the effect of air pollution and 
lockdown on Covid-19 [1, 2]. The extended SIR model is 
written as:1

t t t tP S I R D= + + +                   (1)

where P denotes the total population size of a region. 
The model assumes P is a constant value and consists 
of four different types of people: S, I, R, and D; St refers 
to people who have not yet been infected with Covid-19 
during the t period. Because of the risk of infection, 
they are also called susceptible people; It refers to 
people who have been infected with Covid-19 during 
the t period; Rt refers to people who have recovered; Dt 
denotes people who have died. We assume that people 
who have recovered from Covid-19 would be no longer 
susceptible.

To explore the impact of lockdown on the epidemic, 
we apply the method used by Chudik et al. (2020) [2]. 
The P in Eq. (1) is divided into two groups: Pl is the 
fraction of the population that is healthy and has been 
isolated; Pe is the fraction of the population exposed to 
Covid-19. We assume that the risk of getting infected 
with Covid-19 is low for people who have been isolated. 
Therefore, the model associated with the lockdown is 
written as: 

e t t t tP P S I R Dδ= = + + +                (2)

where δ is the proportion of Pe to P. The expression 1-δ 
measures the level of lockdown enforcement. Cities 
with a higher value of 1-δ implement stricter lockdown 
measures. A value of δ = 1 indicates the city has no 
lockdown.

We further transform the expanded SIR model into 
a set of differential equations. In contrast to previous 
studies, we consider the effect of air pollution on 
Covid-19. These equations are as follows:

1
t

t t t
e

SS S a I
P

β+ − = −
                   (3)

1
1( )t

t t t r d t
e

SI I a I a I
P a

β γ γ+ − = − +
       (4)

1	 The basic SIR model for simulating the spread of infectious 
diseases was first developed by Kermack and McKendrick 
(1927) [3]. 

Appendix

1
1

t t r tR R I
a

γ+ − =
                       (5)

1t t r tD D a Iγ+ − =                          (6)

where β is the contact rate of Covid-19, which depends 
on the biological nature of the Covid-19 virus and which 
we assume does not change with time or place; γr and 
γd are the recovery rate and the death rate, respectively; 
they are treated as constants, although they may change 
due to difference in medical response capabilities across 
cities; a is the impact coefficient of air pollution. Air 
pollution can accelerate the spread of the epidemic, 
decrease the rate of recovery, and increase the death 
rate [4-7]. Thus, we consider aβ, γr/a, and aγd to be the 
actual contact rate, the actual recovery rate, and the 
actual death rate of Covid-19, respectively, under the 
influence of air pollution. We set a>1; a higher value of a 
is associated with more severe air pollution. We assume 
that susceptible people will get infected with Covid-19 
from infected people at time t in this model, leading to 
a secondary infection of aβst. The time distribution of 
It largely depends on the basic reproduction number, 
namely the number of secondary infections (R0) caused 
by one infected person, R0 = aβ/(γr/a + aγd).

We divide both sides of the above equations by P, 
yielding the following equations: 

1t t t t
as s s iβ
δ+ − = −

                    (7) 

1
1( )t t t t r d t

ai i s i a i
a

β γ γ
δ+ − = − +

      (8)

t t t ts i r dδ = + + +                    (9)

where st = St/P, it = It/P, rt = Rt/P, and dt = Dt/P; aβ/δ 
is the effective actual contact rate, and ν = aβ/δ. When 
δ = 1, it means a lockdown has not been implemented 
and everyone is randomly exposed to Covid-19. In this 
case, the effective actual contact rate is consistent with 
the actual contact rate, ν = aβ.

We assume that the spread of Covid-19 starts with a 
non-zero initial value: It>0, St>0. Eq. (7) and Eq. (8) are 
solved by iterating forward a selected non-zero initial 
value. We assume that r1 = d1 = 0; the value of i1 is very 
small at the beginning of the Covid-19 outbreak; thus: 
s1 = δ-i1. Hence, we start with i1 (i1>0) and s1 to iterate 
Eq. (8) forward, yielding the following equations:
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1 1
1

( )
t

ti iτ
τ

λ+
=

= ∏
                          (10)

011 ( + )( 1)r d
Ra s

aτ τλ γ γ
δ

= + −
             (11)

Initially, there are few Covid-19 cases: sτ is close 
to the value of δ, and λτ>1. In this situation, if R0>1, 
the number of confirmed cases is expected to increase 
exponentially. However, as the pandemic develops, the 
recovered and dead people are gradually removed; they 
no longer become infected. Then, there is a certain point 
in time t = t*. When τ> t*, sτ begins to decrease, λτ<1. 
In this case, the value in the parentheses of Eq. (10) 
approaches 0 and is expressed as:

1

lim( ) 0
t

t τ
τ

λ
→∞

=

=∏
                        (12)

Hence, we have:

1lim( ) 0,     lim( / ) 1t t tt t
i i i i∗

+→∞ →∞
= = =

         (13)

1lim( ) ( ) / ( )t r dt
s s a a

a
δ γ γ β∗

→∞
= = +

       (14)

Eq. (13) indicates that i* = 0. Hence, δ = s*+r*+d*. 
We use c* to measure the proportion of infected cases to 
the total population, yielding:

1( ) / ( )r dc r d s a a
a

δ δ δ γ γ β∗ ∗ ∗ ∗= + = − = − +

(15)

We focus on the variation of a and δ in the Covid-19 
curve. To get the functions related to a, δ and it, we need 
to eliminate st in Eq. (14). Based on Eq. (7) and Eq. (8), 
we have:

1 1t
t

t

s a i
s

β
δ

+ = −
                       (16)

1 11 ( )t
t r d

t

i a s a
i a

β γ γ
δ

+ = + − +
         (17)

Because aβ/δ = ν>0, according to Eqs (16-17), we 
generate Eqs (18-19) as follows:

1 1( 1 )t
t r d

t

is a
i a a

δγ γ
β

+= − + +
        (18)

2

1 1

1

1( 1 )
11( 1 )

t
r d

t t
t

tt
r d

t

i a
s i a a a iis a

i a a

δγ γ
β β

δ δγ γ
β

+

+ +

+

− + +
= = −

− + +
(19)

Finally, the second-order nonlinear difference 
equation of it is expressed as:

2
2

1 1
1

[ (1 ) ]t r
t t t d t

t

i ai i i a i
i a

γβ γ
δ+ −

−

= + − − −
 (20)

We assume the initial value of i1 and i2 are functions 
of δ in Eq. (20). This yields:

1 21000 1000 1000
( ) ,   ( ) [1 ( ) ( )]r

d

a
i i a

a
γδ β δ δ

δ δ δ γ
δ

= = + − − +
          

(21)
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