
Introduction

Plankton organisms are an essential component 
of the trophic chain because they provide food for 
other organisms, such as a similar plankton species 
in some cases [1]. Climate change and other changes 
in the environment are threatening these planktonic 
communities as well as the loss of biodiversity. As a 
result, understanding plankton communities is critical 

for fisheries [2]. Plankton is classified into two types: 
phytoplankton (microscopic plant-like organisms) and 
zooplankton (animal-like traits) [3]. Phytoplankton 
are microorganisms that are directly involved in the 
process of primary productivity in the water, which 
are then consumed by zooplankton [4]. Zooplankton 
are important for regulating the availability of energy 
from phytoplankton to a higher trophic level, so the 
composition and presence of zooplankton support fish 
productivity [5].

The difficulty in plankton research is identifying 
species, so taxonomy expertise is required [6].  
The existence of morphological similarities makes  
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Abstract
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it troublesome for taxonomists and takes a long time 
in the identification process [6, 7]. Therefore, advanced 
methods offer Next Generation Sequencing (NGS), 
which can produce plankton taxonomic information 
rapidly and yield quite a lot only from environmental 
samples [8, 9]. The eDNA method is capable of 
detecting more than one species [10, 11], but also 
detects multispecies in various taxa, such as bacteria 
[12], viruses [13], fungi [14], plants [15], invertebrates 
[16], and vertebrates [17]. Seymour [18] introduced 
DNA metabarcoding to identify the multispecies 
of genetic components that are degraded in the 
environment. Environmental DNA applies the concept 
of metabarcoding DNA using environmental samples 
that can be obtained from water, soil, or air to detect the 
presence of an organism and measure its abundance in 
the environment [19].

eDNA metabarcoding is a non-invasive approach for 
recovering genetic materials generated by organisms 
and detached to their  environment [20]. eDNA can 
produce more comprehensive biodiversity assessments 
than conventional methods [21]. eDNA could be a 
viable way to detect the existence of organisms such 
as plankton, fish, bacteria, amphibians, mammals, and 
other taxa without alienating the organism [22, 23]. 
They excrete a large amount of genetic material as 
lysed cells or feces, which degrade into tiny particles 
that could be stored in the water column [24] or settle 
in the sediment [25]. Environmental samples like water 
and soil can be easily extracted for genetic material. 
eDNA is made up of dead cells, dormant organisms, 
and molecules adsorbing on the surface of various 
mineral or organic materials [26].

The diversity of fish in the Ciliwung River from 
the 1910s decreased by 47.1% to 1930, then decreased 
to 92.5% in 2010 [27]. Ciliwung River is the largest 
river flowing in Jakarta, with a length of 119 km and 
476 km2 catchment area. It streams upstream from 
Bogor Regency, through Bogor City, Depok City, and 
Jakarta before reaching the Java Sea via Jakarta Bay. 
Development in the Ciliwung watershed has brought 
about various changes in the landscape, especially in 
the downstream area [28]. Land use for residential 
areas, offices, trade, and agriculture significantly 
impacts decreasing water quality [29]. The high human 
population in Jakarta also makes river flows more 
vulnerable due to the presence of domestic, industrial, 
agricultural, and livestock waste [29, 30]. Intensive 
monitoring is required to determine the potential of all 
species, particularly plankton. 

River management aims to determine the river water 
quality, the ecological conditions, and the river’s ability 
to maintain its biodiversity. Biodiversity management 
is one of the links in managing river sustainability. 
Conditions of good biodiversity can support river 
ecosystem services, namely providing food sources, 
pollutant regulators, supporting ecosystem balance, as 
well as providing recreational and research services 
[31]. The research was carried out during the dry 

season (July 2022). This research aimed to assess the 
biodiversity and composition of plankton species at 
several sites along the Lower Ciliwung River in Jakarta, 
Indonesia, using eDNA methods.

Material and Methods  

eDNA Freshwater Sample Collection

To consider the effect of different ecosystems, the 
sampling locations (East Jakarta, Central Jakarta, 
and North Jakarta, separately) (Fig. 1) were chosen 
from upstream to downstream of the Lower Ciliwung 
River. The three ecosystems have different landscape 
conditions, so it is expected to have different water 
quality conditions and differences in plankton species. 
At each site, three replicate eDNA water samples were 
gathered for a total of nine eDNA freshwater samples. 
eDNA samples were taken directly from the surface 
and placed in 4 L water bottles. Each water sample was 
filtered through 0.45 μm Pall Corporation sterilized  
filter paper (47 mm diameter) using a peristaltic 
pump. The filtration process was halted if the flow 
was interrupted due to filter cluttering.  To avoid 
contamination, a protocol was developed that sterilized 
all equipment between samples and sampling sites with 
distilled water and 10% bleach. Each filter paper was 
then located in a 2 mL cryotube containing 1 mL of 
Deoxyribo-Nucleic Acid/Ribo-Nucleic Acid (DNA/
RNA) shield. 

eDNA Laboratory Analysis

DNA extraction was performed after the field 
sampling utilizing gSYNC DNA extraction kits 
manufactured by Geneaid Biotech following the 
manufacturer’s instructions. DNA amplification was 
carried out using the Polymerase Chain Reaction (PCR) 
technique with the target of the Cytochrome Oxidase 
subunit 1 (COI) gene. This step uses a combination of 
PCR primers, forward primer mlCOIintF and reverse 
primer jgHCO2198. This combination has been shown 
to work well for detecting metazoans down to the 
species level in the 313 bp COI fragment target [32]. 
The first PCR contained 13 µL bioline, 1 µL each of 10 
nM primers (forward and reverse), 2 µL DNA template, 
and 8 µL ddH2O. The following were the phases of the 
DNA amplification PCR profile: (1) pre-denaturation of 
the DNA template at 95ºC (5 minutes); (2) denaturation 
of the DNA template at 95ºC (30 seconds); (3) annealing 
at 42ºC (30 seconds); (4) primary extension at 72ºC  
(30 seconds); and (5) final extension at 72ºC  
(5 minutes) with 35 cycles of stages (2)-(4). To check for 
contamination, the 96 Universal peqStAR PCR machine 
(Peqlab Ltd, USA) was used with negative controls 
(blank templates). After passing the electrophoresis 
quality control, all PCR products were subjected to  
a second PCR for indexing. The PCR cycle began with 
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a 3 minute denaturation at 95ºC, followed by 9 cycles of 
95ºC (30 seconds), 55ºC (30 seconds), 72ºC (30 seconds), 
and 72ºC (30 seconds) (5 minutes). The first and second 
PCR products were purified with AMPure XP before 
proceeding to the next step (Beckman Coulter, Inc). 
For DNA sequencing, the Illumina NovaSeq 6000 
with Illumina MiSeq 16S metagenomic sequencing 
library protocol was used. Oceanogen Environmental 
Biotechnology Laboklinikum (Oceanogen) in Bogor, 
Indonesia, performed the molecular identification of 
eDNA samples.

Bioinformatics and Data Analysis

The sequenced data were then imported into the 
Quantitative Insights into Microbial Ecology 2 software 
(QIIME2, https://qiime2.org) for quantitative analysis 
[33]. The process in QIIME2 includes: (a) deletion of 
forward and reverse primer sequences with cut-adapt 
[34], (b) detection and correction of amplicon sequences 
with the DADA2 pipeline [35], (c) grouping sequences 
based on their proportion of similarity (clustering) to 
produce an Operational Taxonomic Unit (OTU). COI 
sequence taxonomic identification to the species level 
using the CRUX database (Creating Reference Libraries 
Using the eXisting tool). 

Based on read sequences, the biological composition, 
relative abundance, and diversity of plankton were 
evaluated. A read is the DNA sequence from a single 
fragment (a small section of DNA). For each of the three 
sites, taxonomic identification by class was visualized 
on maps with pie charts. The ggplot2 package in  
R v. 4.2.1 (http://r-projekt.org) was used to analyze and 
visualize the relative abundance and composition of the 

identified eukaryotic phytoplankton and zooplankton 
[36]. The results of relative abundance were evaluated 
using the Analysis of Similarities (ANOSIM) test on 
PAST (PAleontological STatistics) v. 4.11. ANOSIM 
test was executed to assign which levels differed 
significantly (p-value≤0.05). The ANOSIM-R value 
shows the extent to which groups differed, i.e., 
barely separated (R < 0.25), separated but strongly  
overlapping (R = 0.25-0.50), separated but overlapping 
(R = 0.50-0.75), and well separated groups (R>0.75) 
[37]. 

SIMPER (Similarity of Percentages) was used to 
examine plankton species contributing to the plankton 
composition from all sites. This analysis breaks down 
each species’ contribution to the reported similarity 
(or dissimilarity) among samples. As a result, we will 
be able to recognize the most significant species in the 
occurrence of similarity [38]. The Shannon-Wiener (H’) 
and Simpson Index (D) were projected by the vegan 
package in R v. 4.2.1 to assess species diversity and 
dominance [39]. Non-metric multidimensional scaling 
(NMDS) was used in R Studio to analyze the difference 
in read sequence composition between sites based on 
the Bray-Curtis distance index [40]. 

Results and Discussion

Eukaryotic Phytoplankton and Zooplankton 
Composition

A genetic approach with different stages, both 
in the process of DNA collection, DNA extraction, 
PCR, and bioinformatics sorting would potentially be 

Fig. 1. Three eDNA freshwater sample collection sites across the Lower Ciliwung River: (1) East Jakarta; (2) Central Jakarta; and (3) 
North Jakarta. 
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biased [41]. Therefore, this study was further classified 
based on the type of plankton. The next-generation 
sequencing of amplicons from 9 samples collected 
from 3 sites yielded 1,492,975 original reads, which 
were then filtered to 1,265,307 reads. The eukaryotic 
phytoplankton taxa identified from the eDNA samples 
included 22 species representing 16 genera, 15 families, 
13 orders, 9 classes, and 6 phyla. Meanwhile, the 
identified zooplankton included 15 species from 12 
genera, 10 families, 7 orders, 4 classes, and 3 phyla.  
This research shows the benefit of eDNA metabarcoding 
in illuminating freshwater plankton biodiversity  
in the Lower Ciliwung River, Indonesia. We emphasized 
its prospect for improving assessment and conservation 
of ecologically valuable taxa. This method can be 
used in a variety of situations where traditional census 
methods (such as morphology-based identification  
and visual census) produce poor results or necessitate 
a large sampling effort [42]. This is the case when 
we assess invasive,  threatened, or shrouded harmful 
species [43]. 

Environmental patterns primarily influence the 
abundance of aquatic organisms (including plankton) 
[44]. It should be noted that numerous sequen ces 
were generated, some of which corresponded to 
other organisms (e.g., fish, benthos, and other macro-
microorganisms) or species that could not be identified 
because of technical difficulties (e.g., inadequate 
guidance databases). Thus, when interpreting data for 
ecosystem monitoring, these factors must be considered 
[45]. However, this study detected more phytoplankton 
phyla (Bacillariophyta, Chlorophyta, Cryptista, 
Haptophyta, Ochrophyta, and Miozoa) than the 5 
phytoplankton phyla (Bacillariophyta, Chlorophyta, 
Charophyta, Ochrophyta (former Chrysophyta), 
Cyanobacteria (former Cyanophyta), and Rhodophyta) 
reported by Pambudi et al. [46]. 

This study did not detect Cyanobacteria as found by 
Pambudi et al. [46]. This is thought to be caused by the 
primer used, namely the universal primer for metazoans. 
In genetic analysis, each organism has a unique DNA 
sequence. Therefore, forward and reverse primers must 
be designed with specific sequences for the organism 
to be detected or identified in the eDNA sample. A 
properly designed primer will maximize amplification 
efficiency and produce accurate and specific results 
[32]. The results of this study (3 phyla: Arthropoda, 
Cnidaria, and Rotifera) also complement Rahmatia 
et al. [47], who found 5 zooplankton phyla (Protozoa, 
Rotifera, Mollusca, Nematoda, and Arthropoda) in the 
Ciliwung River. According to these findings, eDNA 
metabarcoding can be potential to identify complex 
parts of freshwater biodiversity that reside in hidden 
areas and are often inaccessible using conventional 
methods [48]. 

In general, the taxa identified show that the most 
commonly discovered plankton classes across whole 
sites were Mediophyceae (eukaryotic phytoplankton) 
(Fig. 2) and Monogononta (zooplankton) (Fig. 3). 
All sites had high between-site variability in class 
composition. Thalassiosirales from Mediophyceae class 
(Fig. 4) and Ploima from Monogononta class (Fig. 5) had 
the highest relative abundance. The relative abundance 
of eukaryotic phytoplankton and zooplankton detected 
in eDNA water samples not differed significantly 
(p-value>0.05) between the three sites (ANOSIM-R 
value by site: R = 0.32 (eukaryotic phytoplankton),  
R = 0.05 (zooplankton)). The eukaryotic phytoplankton 
compositions were separated but strongly overlapped 
(ANOSIM-R = 0.25-0.50), meanwhile the zooplankton 
compositions were barely separated between sites 
(ANOSIM-R<0.25). According to Effendi et al. [49], 
numerous factors can obscure quantitative inferences 
from eDNA water samples, causing practical 

Fig. 2. Class-level eukaryotic phytoplankton structure at 3 sites in the Lower Ciliwung River, Jakarta.
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is the most common phylum found in the Lower 
Ciliwung River. These findings corroborate Pambudi et 
al. [46], who observed that the group of phytoplankton 
that dominates freshwaters consists primarily of 
Bacillariophyta (diatoms) due to their high adaptability 
to the environment and rapid reproduction. According 
to Sirait et al. [50], dominance of Bacillariophyta shows 
competition in resource utilisation and unbalanced or 
stressed aquatic environmental conditions.

Moina macrocopa is a type of zooplankton species 
that has the potential to be used as live food (natural 
feed) for fish and shrimp. Moina are found throughout 
freshwater, such as rivers, lakes, swamps, reservoirs, 

implementation of read abundances from eDNA kind 
of chancy. Nevertheless, seasonal data can serve useful 
insights on species distribution and diversity. As 
with environmental issues, eDNA sampling could be 
incredibly beneficial because the method is effective 
and simple to standardize all over time and location 
[11].

Furthermore, SIMPER analysis was found to be 
effective in identifying the most contributed species 
across all sites (Table 1). The SIMPER analysis was 
used to determine the most contributed species from all 
sites. Stephanocyclus cryptica is a diatom from the class 
Mediophyceae, phylum Bacillariophyta. Bacillariophyta 

Fig. 3. Class-level zooplankton structure at 3 sites in the Lower Ciliwung River, Jakarta.

Fig. 4. Eukaryotic phytoplankton order composition and relative abundance at 3 sites in the Lower Ciliwung River, Jakarta.
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and ponds. Moina macrocopa has a high protein 
content and the right size for the mouth opening of fish 
or shrimp and can easily be digested in the digestive 
tract of fish and shrimp [51]. Brachionus plicatilis is 
a zooplankton from phylum Rotifera, which plays a 
vital role as food for various types of cultivated fish. 
B. plicatilis can provide higher survival to crab larvae 
and accelerate the moulting process. In addition, B. 
plicatilis is a good feed for the larvae of tiger grouper 
(Epinephelus fuscoguttatus), barramundi (Lates 
calcarifer), and mullets (Mugil cephalus). B. plicatilis 
is small (150-220 µm) and swims slowly, making it 
easy for larvae to prey. They have a high reproductive 
rate, easy to digest, easy to breed, and have relatively 
high nutritional value content [52]. These results were 
supported by Rahmatia et al. [47] who suggested 
that Asplanchna sp. and Brachionus sp. are the most 
common zooplankton in the Ciliwung River.

Eukaryotic Phytoplankton and Zooplankton 
Diversity

The Shannon-Wiener diversity index (H’) was 
found to be generally inversely related to the Simpson 
dominance index (D). The values of these indices 
represent the species composition for every site. The 
eukaryotic phytoplankton diversity index (H’)  was 
in the low to moderate category (ranged from 0.90 
to 1.82), whereas H’ of zooplankton is slightly lower 
(ranged from 0.69 to 0.98) and falling into the low 
diversity. The dominance index (D) classified from low 
to high dominancy for eukaryotic phytoplankton and 
high dominancy for zooplankton (ranged from 0.22 to 
0.60 and 0.57 to 0.72, respectively) (Fig. 6). The general 
Simpson Dominance Index (D) was near to zero, 
indicating that no taxon dominated the entire study 
location. The results of statistical analysis of plankton 
at each sampling site from the NMDS results showed 
a stress value of 0.12 (Fig. 7). The stress value on the 
NMDS graph ranges from 0 to 1. The lower the stress 
value, the more reliable the graph is [40]. 

The ordination on the NMDS tends to be grouped for 
each site, with some of the data for Site 1 being closer 
to those of Site 2. This is thought to be related to the 
environmental conditions of the waters, which tend to be 
the same between Site 1 and Site 2 so that the biota also 
found not significantly different. Many environmental 
factors, which including physical, chemical, and 
biological parameters, can cause significant variation in 
the presence of eDNA particles between sites [49, 53]. 
The topographic conditions influencing water transport 
processes were most likely one of the factors that 
caused disparities in eDNA diversity and abundance. 
Environmental factors such as pH, water temperature, 
water currents, dissolved oxygen, organic matter, UV 
radiation, as well as the quantity and type of material 

Fig. 5. Zooplankton order composition and relative abundance at 3 sites in the Lower Ciliwung River, Jakarta.

No. Species Contribution 
(%)

Cumulative 
(%)

Phytoplankton

1 Stephanocyclus cryptica 66.47 66.47

2 Micromonas commoda 12.31 78.78

3 Aulacoseira ambigua 3.37 82.16

 Zooplankton

1 Moina macrocopa 38.52 38.52

2 Brachionus plicatilis 34.70 73.22

3 Brachionus calyciflorus 13.05 86.27

Table 1. The most contributing species (up to 80%) at the study 
site.
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used for sampling can all have an impact on eDNA 
quality and retention [54]. The marine organisms 
that were also detected in this study are thought to 
be related to the sampling location, which is at the 
mouth of the river. eDNA from aquatic organisms can 
travel long distances depending on water conditions, 
for example  fish and invertebrates found up to 10 km 
from their original habitat [55]. Thus, differences in 
species composition and abundance observed across all 
sites could be attributed to rates of chemical-physical 
components and organic material decomposition, which 
therefore influence DNA persistence and  degradation 
rates [56, 57].

One challenge with using eDNA-based 
biomonitoring strategies in streams  is that organisms’ 
DNA would be transferred downstream, frequently 
over unspecified distances and  across least understood 
processes [55]. Another feasible limitation of this 
research is the inability to identify the species express. 
Primer sensitivity, lack of DNA template, and DNA 

degradation can contribute to the inability to amplify 
DNA from collected samples. Furthermore, for eDNA 
studies, determining the authentic DNA template 
concentration within the aquatic environment at the 
collection time is difficult [49]. It is becoming clear 
that eDNA sampling has massive benefits, including 
the capacity to strive sampling without being (or only 
minimally) impacted by changing site conditions or a 
limitation of taxonomic specialist [58].

Environmental DNA monitoring could be a massive 
benefit to underfunded national services. eDNA 
metabarcoding, in particular, can be advantageous 
for observing communities that contain multiple 
conservation-sensitive species. It is possible to respond 
more quickly if plankton dominance occurs or newly 
invasive fish species are discovered if surveys are 
undertaken on a regular schedule (e.g., every 6 months) 
[48, 59]. eDNA, on the other hand, cannot be applied 
to distinguish between dead and alive biota or to 
examine demographic parameters that are  important 

Fig. 7. NMDS analysis of a) eukaryotic phytoplankton and b) zooplankton reads sequences based on Bray-Curtis distance.

Fig. 6. a) Shannon-Wiener Diversity Index (H’) and b) Simpson Dominance Index (D) values for plankton identified.
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in environmental  studies [59]. The Ciliwung River’s 
management efficiency must be improved by ensuring 
high-level compliance with regulations through 
stakeholder involvement, robust surveillance, and 
enforcement. Understanding plankton abundance and 
distribution is also important for improving management 
efficiency and directing resource usage, especially in high 
biodiversity locations [60]. The information on plankton 
composition,  abundance, and diversity  presented in this 
study represents a snapshot of the current state and can 
be used to state river ecosystem management. As a 
result, these data can be used as a benchmark for regular 
inspection of Ciliwung River fisheries.

Conclusions

Environmental DNA is a delicate and convenient 
method for investigating aquatic organisms with broad 
geographical distribution patterns, so  it can be used 
to supplement traditional methods. The original reads 
were filtered from 1,492,975 to 1,265,307 reads. The 
eukaryotic phytoplankton taxa found in the eDNA 
samples included 22 species from 16 genera, 15 
families, 13 orders, 9 classes, and 6 phyla. Meanwhile, 
15 species were identified from 12 genera, 10 families, 
7 orders, 4 classes, and 3 phyla of zooplankton. The 
taxa identified from the eDNA samples show that 
order Thalassiosirales from class Mediophyceae 
(eukaryotic phytoplankton) and order Ploima from 
class Monogononta (zooplankton)  were the most 
commonly discovered plankton across entire sites. The 
relative abundances of eukaryotic phytoplankton and 
zooplankton detected in eDNA water samples did not 
differ significantly (p-value>0.05). 

The most abundant species for all sites were 
Stephanocyclus cryptica (phytoplankton) and 
Moina macrocopa (zooplankton). The eukaryotic 
phytoplankton diversity index (H’) was in the low 
to moderate (ranged from 0.90 to 1.82), whereas the 
zooplankton diversity index (H’) is in low category 
(ranged from 0.69 to 0.98). eDNA has potential benefits, 
but it is limited by the inability to identify species 
expressed (dead or living organisms), primer sensitivity, 
lack of DNA template, and DNA degradation. It is 
becoming increasingly difficult to ensure that DNA is 
transferred downstream, over unspecified distances 
and across less understood processes. Additionally, 
determining the authentic DNA template concentration 
within the aquatic environment is difficult.
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