
Introduction

In recent years, global warming caused by the 
massive emission of greenhouse gases has brought a 
series of negative impacts on the living environment of 
human beings, which is an urgent problem for human 

society [1]. China’s CO2 emissions are currently ranked 
first in the world. In particular, the power industry’s 
CO2 emissions account for more than 40% of the total 
national emissions [2]. One of the main ways for the 
power sector to achieve carbon emission reduction 
targets is to prioritize the development of renewable 
energy and reduce the use of fossil fuels in generation 
expansion planning [3-6]. As a consequence, generation 
expansion planning plays a key role for the achievement 
of more renewable energy and low CO2 emissions 
objectives in an efficient and effective way. 
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Traditional generation expansion planning takes 
the minimum investment and operating costs during 
the planning period as the sole criterion [7-10]. With 
the increasingly serious environmental problems 
and people’s awareness of environmental protection, 
traditional generation expansion planning has been 
unable to meet the requirements of social development 
and has gradually shifted to a low-carbon direction 
[11-12]. In the generation expansion planning for low-
carbon targets, scholars have paid more attention to 
a variety of low-carbon elements, including the use 
of renewable energy generation technologies and the 
implementation of renewable energy incentives, all of 
which have profound impacts on traditional generation 
expansion planning. 

Some scholars have introduced renewable energy 
generation technologies such as photovoltaic plants, 
hydropower units, wind turbines, and biomass units 
into the generation expansion planning model. For 
example, Jayapalan et al. [13] considered the wind 
and solar energy sources as the candidates with 
conventional power plants and fund the most optimal 
generation capacity expansion planning. Gitizadeh 
et al. [14] studied the issue of generation expansion 
planning including onshore wind, offshore wind, solar 
and other renewable energy power plants. Aghaei et 
al. [15] considered multiple renewable energy sources 
to establish a multi-objective generation expansion 
planning model with minimum cost, emissions, energy 
consumption, investment risk and maximum system 
reliability, and adopted fuzzy decision-making methods 
to obtain the optimal solution. Jain et al. [16] studied 
the allowable access range of wind DGs, and provided 
a scientific decision basis for wind DGs to access 
generation expansion planning. Kaabeche et al. [17] 
focused on the development of an optimal sizing model 
to optimize the capacity sizes of various stand-alone P 
V/wind/diesel/battery hybrid system components.

To achieve more installed capacity for renewable 
energy, the government’s measures are needed, such 
as the carbon trading mechanism [18-21] and the green 
certificate transaction mechanism [22-25]. The essence 
of the carbon trading mechanism is to trade carbon 
emission permits as a commodity, and encourage 
enterprises to engage in carbon emission reduction 
activities, thereby achieving the goal of reducing carbon 
emissions. Currently, it has been widely used in most 
developed countries. The introduction of a carbon 
trading mechanism will undoubtedly have an impact 
on traditional generation expansion planning. Zhu et 
al. [26] developed a dynamic optimization method to 
planning MEPS (municipal electric power systems) of 
Beijing, and carbon trading has been introduced into 
MEPS for mitigating CO2 emissions. In addition, Zhu et 
al. [27] also developed a risk-explicit mixed-integer full-
infinite programming (RMFP) approach for planning 
carbon trading in electric power systems. Unsihuay-
Vila et al. [28] established a multi-objective, multi-
region and multi-stage generation expansion planning 

model, focusing on a clean development mechanism 
and European Union greenhouse gas emission trading 
scheme. Tan et al. [29] established an integrated 
optimization model to study the impacts of clean energy 
and carbon trading mechanism on inter-regional energy 
exchange.

Similar to the carbon trading mechanism, the green 
certificate transaction mechanism aims to promote 
the adjustment of energy structures. The difference 
is that the carbon trading mechanism is mainly to 
reduce CO2 emissions, while the green certificate 
transaction mechanism is to promote the development of 
renewable energy. Bergek et al. [30] have shown that the 
introduction of green certificate transaction mechanisms 
will promote technological progress and industrial 
transformation in the power sector. Qin et al. [31] 
further discussed the positive effects of green certificate 
transaction mechanisms on promoting the proportion 
of renewable energy in China. Park et al. [32] present 
a stochastic generation expansion planning model to 
investigate the changes in generation building decisions 
and CO2 emissions under environmental energy policies, 
including carbon tax and green certificate transaction 
mechanisms. Geem et al. [33] proposed an optimal 
energy mix planning model in electricity generation 
from various energy sources, such as gas, coal, nuclear, 
hydro, wind, photovoltaic, and biomass, which considers 
more renewable portions by imposing renewable 
portfolio standards.

Generation expansion planning is a multi-variable, 
multi-objective and multi-stage nonlinear dynamic 
optimization problem. There is currently no strict 
unified algorithm. In recent years, more and more 
swarm intelligence algorithms have been introduced 
into generation expansion planning. Among them, 
genetic algorithm (GA) and particle swarm optimization 
(PSO) have been widely used. Pereira et al. [34-36] 
used genetic algorithm to optimize the scale of a hybrid 
renewable energy system. However, this method has 
the disadvantages of long computation time, over-
complexity and occasionally calculating local optimal 
solutions. Ganguly et al. [37-41] optimized the installed 
capacity of hybrid renewable energy systems by 
particle swarm optimization, which has strong global 
optimization ability, but its local search ability is 
relatively poor. Based on the idea of solving problems 
creatively by human beings, Shi [42-43] proposed a new 
swarm intelligence algorithm, brain storm optimization 
(BSO), in 2011. A human being is the smartest animal in 
the world, and the BSO algorithm inspired by its social 
behavior is considered to be a promising method. In 
the low-carbon generation expansion planning problem, 
BSO has the advantage of searching global optimal 
values in parallel. It can find the optimal fitness value 
within the range of small iterations and the specified 
accuracy requirements. Therefore, the BSO algorithm is 
used to optimize the model in this paper.

This paper aims to propose a low-carbon generation 
expansion planning model that takes into account  
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the economic, low-carbon and reliability of the system, 
and contributes to the previous literature in this field: (i) 
building the optimization model for generation expansion 
planning considering carbon trading mechanism and 
green certificate transaction mechanism; (ii) using fuzzy 
chance constraints to address the problem of the multiple 
uncertainties for load forecasting, wind power output 
and photovoltaic power output; (iii) adopting the BSO 
algorithm to solve the low-carbon generation expansion 
planning model. The results will help decision makers 
guide the optimization of power source structure in the 
power sector. 

The structure of this paper is organized as follows: In 
Section 2, a low-carbon generation expansion planning 
model is constructed. Section 3 briefly introduces 
the BSO algorithm and Section 4 shows details of the 
case study data. In Section 5, BSO, PSO and GA are 
respectively adopted to solve the low-carbon generation 
expansion planning model, and the results are compared. 
In Section 6, the results obtained by BSO algorithm are 
explained and discussed.

Modeling formulation 

Objective Function

The traditional generation expansion planning model 
takes the minimum investment cost and operating 
cost of the system during the planning period as the 
objective function, and does not consider environmental 
issues such as carbon emissions. This paper introduces 
the carbon trading mechanism and the green certificate 
transaction mechanism widely used in developed 
countries into generation expansion planning, taking 
into account investment cost, operating cost, carbon 
trading cost and green certificate transaction cost, and 
a low-carbon generation expansion planning model with 
the minimum system economic cost as the objective 
function is established. The objective function is defined 
as follows:

         (1)

…where C is the total cost during the planning period; 
T is the planning period; Ci

t is the investment cost at 
year t;  Co

t is the operating cost at year t; Ct
CO2

 is the 
carbon trading cost at year t; Cg

t is the green certificate 
transaction cost at year t.

Investment Cost

The service life of different types of units is not the 
same. For the convenience of calculation, this paper 
adopts the equal annual value method to convert the 
static investment cost of the units into the equivalent 
annual investment cost.

                  (2)

…where Ωnew is the collection of units to be built; Ii is the 
static investment cost of unit i; the value of Dit is a 0 or 1, 
when Dit = 1, it means that the unit i is to be built at year 
t, when Dit = 0, it means that the unit i is not to be built 
at year t; ni is the service life of unit i; r is the discount 
rate.

Operating Cost

The operating cost of the unit at year t is:

                        (3)

…where N is the number of units already built at year t, 
Ci is the operating cost of unit i, and Eit is the generating 
capacity of unit i at year t.

Carbon Trading Cost

Carbon trading mechanism is essentially an 
important mechanism for reducing carbon emissions 
from a power system through the trading of carbon 
emission permits. There are two primary allocation 
methods for carbon emission permits that are widely 
used at present: free distribution and paid distribution. 
For power generation companies, the use of a paid 
distribution method will increase the cost of the 
company, so the company will have a conflicting 
attitude, while the free distribution method is relatively 
moderate and easy to implement. Therefore, this paper 
adopts the method of freely assigning initial carbon 
emission permits, and the carbon trading cost can be 
expressed as:

           (4)

…where P is the carbon price, Kit is the carbon emission 
intensity of unit i at year t, and ηi

CO2 is the carbon cap per 
unit of electricity.

Green Certificate Transaction Cost

In order to promote the development of renewable 
energy, developed countries have proposed the 
renewable portfolio standard (RPS), which is essentially 
an incentive mechanism to promote energy development 
and utilization. The implementation of this standard 
must be completed through the green certificate 
transaction mechanism. The quota is generally 
expressed as the proportion of the generating capacity of 
renewable energy units to the total generating capacity, 
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and the generating capacity of renewable energy units 
is converted into a certain number of green certificates. 
Determine profit or pay costs based on the company’s 
actual generating capacity and the regulatory agency’s 
established renewable energy quotas. The green 
certificate transaction cost can be expressed as:

           (5)

…where vg
t is the green certificate price at year t; kg is 

the quantitative coefficient that converts renewable 
energy generation into a certain amount of green 
certificates; Ωre is the collection of renewable 
energy units; and ηg

t is the renewable energy quota 
coefficient.

Constraints

Power Balance Constraint

Under a certain confidence level, the sum of the 
unit’s output at year t of the system shall not be less 
than the maximum load demand of that year:

 (6)

…where PCi, PPVi, and PWTi are the output of conventional 
units, wind turbines, and photovoltaic plants; NC, NPV, 
and NWT are the number of conventional units, wind 
turbines, and photovoltaic plants at year t; Pt is the 
maximum load demand of the system at year t; and α is 
the confidence level.

Load forecasting, wind power output and 
photovoltaic power output are uncertain. In order to 
ensure the reliability of power supply, the installed 
capacity of the power system should not only meet the 
load demand, but also have a certain reserve capacity. 
However, the power reserve ratio is not included in 
the formula because the uncertainty factors have been 
considered in the fuzzy chance constraints.

Electric quantity Balance Constraint

During the planning period, the annual generating 
capacity of the system should meet the electricity 
demand for that year:

          (7)

…where εit is the station service power consumption rate 
of unit i at year t, δit is the line loss rate at year t, and Dt 
is the electricity demand at year t.

Unit Output Constraint

The output of the unit is limited to a certain range:

iiiitiiti PhEPh ββγ ≤≤min,                 (8)

…where hi is the annual utilization hours of unit i; γi,min 
is the minimum output coefficient of unit i; βi is the 
availability factor of unit i, and βi = 1-forced outage rate; 
and Pi is the output of unit i at year t.

Installed Capacity Constraint

Due to the constraints of technology, policies, funds, 
etc., the installed capacity of the newly commissioned 
units of the system cannot exceed the maximum limit 
capacity each year:

                        (9)

…where Pit,max is the maximum limit capacity of unit i at 
year t.

Handling of Fuzzy Chance Constraints

There are many uncertainties in the process of 
generation expansion planning. If these uncertainties are 
ignored, the optimal solution obtained may no longer 
maintain optimal. As a result, the generation expansion 
planning result deviates from the actual situation, which 
adversely affects the power quality and power supply 
reliability of the system. Therefore, the uncertainties 
should be fully considered in the generation expansion 
planning to make the planning results realistic [44]. This 
paper considers the ambiguity of the system’s maximum 
load, wind power output and photovoltaic power output, 
and uses fuzzy chance constraints to transform these 
uncertain factors into deterministic factors.

The fuzzy parameters of the system’s maximum 
load, wind power and photovoltaic power output during 
the planning period can be represented by a trapezoidal 
function [45]:
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…where μ(PF) is the trapezoidal membership function, 
and PF(i = 1,2,3,4) are the trapezoidal membership 
parameters.

PF can be determined by the predicted value Pforecast:
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                        (11)

…where ωi(i = 1,2,3,4) are the scale factors.
Then the trapezoidal fuzzy parameters can be 

expressed as:

( ) ( ) forecast
FFFFF PPPPPP 432143,21 ,,,,, ωωωω==

(12)

The trapezoidal fuzzy parameters are shown in  
Fig. 1.

At present, there are two main methods to deal with 
fuzzy chance constraints: fuzzy simulation method and 
clear equivalence class method. The clear equivalence 
class method is convenient to convert and suitable for 
solving models [46]. This paper uses this method to 
transform the fuzzy chance constraint into its clear 
equivalence class.

Assume that the constraint is the following form:

( ) ( ) ( ) ( ) ( )xhxhxhxhxg tt 02211, ++++= ξξξξ L
(13)

…where ξk are the trapezoidal fuzzy parameters(rk1, rk2, 
rk3, rk4), k = 1,2,...t, t ∈ R and rk1 – rk4 are the membership 
parameters.

Define two functions:
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hk
+(x) and hk

– need to satisfy:

( ) ( ) ( )xhxhxh kkk
−+ −=                (16)

Particularly, if h(x) = 1, then h+(x) = 1, h– (x) = 0; if 
h(x) = –1 h+(x) = 0, h– (x) = 1. So:
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…where  ( )1234 ,,, kkkkk rrrr −−−−=′ξ .

According to the algorithm of the trapezoidal fuzzy 
number, we can get:
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When (1 – α)r1 + αr2 ≤ 0, Cr{g(x,ξ) ≤ 0} ≥ α is 
true for any confidence level α. Therefore, when the 
confidence level of the fuzzy chance constraint α ≤ 0.5 , 
the clear equivalence class of Cr{g(x,ξ) ≤ 0} ≥ α is:
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In this paper, the annual maximum load of the 
system is represented by the trapezoidal fuzzy number 
(P1, P2, P3, P4), the wind power output is represented 
by the trapezoidal fuzzy number (PWT1, PWT2, PWT3, 
PWT4) , and the photovoltaic power output is represented 
by the trapezoidal fuzzy number (PPV1, PPV2, PPV3, 
PPV4). Using the above-mentioned processing method 
for fuzzy chance constraints, the system’s power  
balance constraint is transformed into its clear 
equivalence class:
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  (20)

Brain Storm Optimization (BSO)

The brainstorming method was first proposed by 
Alex F. Osborn in 1939 and was used as a creative 
solution to problems. The central idea of this method is 
to gather a group of people with different backgrounds 
to speak freely around a specific topic, and finally 
form the best solution to solve the problem through the 
exchange of ideas. There are four basic guidelines for 
brainstorming:

(1) Any ideas of the brainstorming group members 
around the topic can be raised.

Fig 1. Trapezoidal fuzzy parameters.
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(2) All ideas cannot be judged until the end of a 
round of meetings.

(3) Many new ideas are generated from existing 
ideas.

(4) Generate as many new ideas as possible, and 
then select from a large number of ideas to obtain the 
optimal solution.

Based on the idea of creative problem solving 
in brainstorming sessions, Shi proposed a new 
group intelligent optimization algorithm, brain 
storm optimization algorithm (BSO), in the Second 
International Conference on Swarm Intelligence 
(ICSI11) in 2011 [42]. Unlike traditional swarm 
intelligence algorithms, the BSO algorithm is the first 
inspired by human behavior. By grouping, replacing 
and creating three kinds of operations, BSO simulates 
the group behavior of human beings in the problem-
solving process to generate as many new individuals as 
possible, so as to gradually find the optimal individual 
from generation to generation. BSO optimizes the 
individual in parallel in each class to promote the local 
search, and promotes global search by jumping out of 
the local optimum through inter-class cooperation and 
mutation operations. The optimization process of the 
cluster center ensures the convergence performance of 
the algorithm, and the process of optimizing individual 
mutations in a class ensures the diversity of algorithm 
populations.

The following is the implementation process of BSO 
algorithm [43]:

Step 1: Randomly generate n individuals in the 
target search space.

Step 2: Calculate the fitness function values of the n 
individuals.

Step 3: The n individuals are divided into M classes 
by k-means clustering method.

Step 4: The individual who obtained the optimal 
fitness function value in each class was taken as the 
center of the class.

Step 5: Randomly select the central individual of 
a class, and the class center is updated with a certain 
probability pa. Randomly generate a number r1 between 
0 and 1, if r1<pa, then randomly generate an individual 
to replace the selected class center.

Step 6: Update the individual in the following four 
ways:
 – Randomly select a class and add random disturbances 

to the class center to generate a new individual.
 – Randomly select a class, select an individual at 

random in the selected class, and add a random 
disturbance to generate a new individual.

 – Two classes are randomly selected, and two class 
centers are fused together with random disturbances 
to generate a new individual.

 – Two classes are randomly selected, and each 
individual is randomly selected from each class to 
perform fusion, and a random disturbance is added 
to generate a new individual.

Suppose pb is the probability of adjusting the 
first two ways mentioned above to update the individual, 
and randomly generate a number r2 between 0 and 1. If 
r2<pb, then the individual is updated. Randomly generate 
a number r3 between 0 and 1. pm stands for the 
probability that the individual in class m is selected. 
If r3<pm, and r3<pc, update the individual in the manner 

(1). If r3≥pc cpr ≥3 , update the individual in the 
manner (2). If r2≥pb , then randomly generate a number 
r4 between 0 and 1. If r4<pd, update the individual 
in the manner (3). If r4≥pd, update the individual in the 
manner (4).

Step 7: Compare the fitness function values of the 
new individual with the original individual. If the new 
individual is superior, replace the original individual.

Step 8: Compare the individuals in the M categories 
to find the individuals with the optimal fitness function 
value.

Step 9: Update the individual one by one. If the 
condition of iteration stop is met, stop the iteration. 
Otherwise, return to step 3 until the iteration is stopped.

Where the group is selected with a certain 
probability, and the probability that each group is 
selected is proportional to the number of individuals in 
this group.

For the generation of new individuals, it can be 
expressed as:

( )2,σµξ Nxx selected
d

new
d ×+=           (21)

…where xd
nwe is the d-dimensional component of the 

newly created individual; xd
selected is the d-dimensional 

component of the selected individual; N(μ,σ2) is a normal 
distribution with a mean of μ and a variance of σ2; ξ is a 
weight factor that can be expressed as: 

( ) ( )randomktTsig ×−×= ]/5.0[logξ    (22)

…where the function of log sig is a transfer function 

and the expression is )exp(1
1)(log

n
nsig

−+
= ; T is 

the maximum number of iterations; t is the current 
iterations;  k is used to change the slope of log sig(n); 
the function of random represents a random function 
between 0 and 1.

The fusion process of two individuals can be 
expressed as:

                (23)

…where xnew is a new individual generated by the 
fusion of two individuals, x1 and x2 are two individuals 
performing the fusion operation, and r is a random 
number between 0 and 1.

The flow chart of BSO is as follows:
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Case Study

In order to verify the validity and applicability of 
the low-carbon generation expansion planning model, 
this paper uses the basic situation of a certain region in 
the literature [47] as a data source, and optimizes the 
generation expansion planning problem in this region 
from 2018 to 2025. The load forecast values during the 
planning period are shown in Table 1. The original unit 
parameters of the system are shown in Table 2. The 
planned unit parameters during the planning period 
are shown in Table 3. The construction period of the 
unit is ignored here. The load forecasting, wind power 
output and photovoltaic power output are represented by 
trapezoidal fuzzy parameters. The values of trapezoidal 
fuzzy membership parameters are shown in Table 4. 
The quota indicators for each year during the planning 
period are shown in Table 5.

Fig. 2. Flow chart of BSO.

Table 1. Load forecast values during the planning period.

Year
Annual maximum 

load
(MW)

Annual electricity 
consumption
(Billion kWh)

2018 2900 12

2019 3190 13.2

2020 3509 14.52

2021 3860 15.97

2022 4245.9 17.57

2023 4670.5 19.33

2024 5137.5 21.26

2025 5651.3 23.38
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Table 2. Original unit parameters of the system.

Type Coal-fired unit A Coal-fired unit B Hydropower unit Wind turbine Photovoltaic plant

Unit capacity (MW) 300 600 100 100 20

Number of units 3 3 2 2 6

Operating cost (RMB/kWh) 317500 285600 65500 100500 120100

Carbon intensity (tonne/kWh) 905 746 0 0 0

Annual utilization hours (h) 6000 6000 3000 2400 2000

Minimum output coefficient 0.75 0.75 0 0 0

Forced outage rate 0.065 0.05 0.03 0.05 0.05

Table 3. Planned unit parameters of the system.

Type Coal-fired unit A Coal-fired unit B Hydropower unit Wind turbine Photovoltaic plant

Unit capacity (MW) 300 600 100 100 20

Number of units 3 6 6 5 12

Investment cost (million RMB) 1122 2160 600 786.4 135.2

Operating cost (RMB/kWh) 317500 285600 65500 100500 120100

Service life (year) 25 25 30 20 25

Carbon intensity (tonne/kWh) 905 746 0 0 0

Annual utilization hours (h) 6000 6000 3000 2400 2000

Minimum output coefficient 0.75 0.75 0 0 0

Forced outage rate 0.065 0.05 0.03 0.05 0.05

Table 4. Trapezoidal fuzzy parameters.

Fuzzy parameter ω1 ω2 ω3 ω4

Load 0.98 0.99 1.01 1.02
Wind power output 0.96 0.98 1.02 1.04

Photovoltaic power output 0.94 0.97 1.03 1.06

Table 5. Parameters of renewable energy incentive mechanisms.

Year Carbon price 
(RMB/tonne)

Green certificate price
(RMB/base)

Carbon cap 
(tonne/kWh)

Renewable energy 
quota

2018 35 20 750 0.18

2019 35.42 20.24 740 0.19

2020 35.85 20.48 720 0.20

2021 36.28 20.73 710 0.21

2022 36.71 20.98 690 0.22

2023 37.15 21.23 680 0.24

2024 37.60 21.48 660 0.25

2025 38.05 21.74 650 0.26
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As shown in Table 4, due to the large variation 
of wind power and photovoltaic power output, their 
membership degree parameters have a large expansion 
range. The load forecasting is more accurate, so the 
expansion range is smaller. In Table 5, the initial 
carbon price is 35 RMB/ton, the initial price of green 
certificate is 20 RMB/base, and the expected growth 
rate is set to 1.2%. The initial value of the renewable 
energy quota is 0.18 and the expected growth rate is set 
to 5%. In addition, the carbon cap is 90% of the product 
between the power generation benchmark and the power 
generation under normal conditions of the enterprises, 
in which the power generation benchmark is 0.2% 
lower than the previous year, and the initial value of the 
carbon cap is 750 ton/kWh.

The relevant parameters are set as follows: the 
discount rate is 10%, the fuzzy confidence level is 
75%, and each green certificate represents 1MWh of 
renewable energy generation. In recent years, the scale 
of wind power generation and photovoltaic power 
generation has been expanding, which has led to the 
technological advancement of the industry and the 
decline in material prices. It has also brought about a 
year-on-year decline in the investment cost of wind 
power and photovoltaic power generation. According 
to the International Energy Agency’s (IEA) World 
Energy Outlook [48], the investment cost of photovoltaic 
plants is reduced by approximately 8.08% per year 
during the planning period, and the investment cost 
of wind turbines is reduced by approximately 0.38% 
per year. For the station service power consumption 
rate and the line loss rate, this paper takes the average 
value of them in recent years and remains unchanged 
during the planning period. After taking the average, 
the station service power consumption rates of thermal 
power, hydropower, wind power and photovoltaic power 
generation are: 7.67%, 2.57%, 3.67%, 2.01%, and the 
line loss rate is 2.99%.

Comparing BSO with other Algorithms

The BSO, PSO and GA are used to solve the 
low-carbon generation expansion planning model, 
respectively, and the experimental results of BSO are 
compared with that of PSO and GA to evaluate the 
effectiveness of the BSO algorithm. The experiments 
are performed using the MATLAB R2015a program. 
Each algorithm runs 30 times, and the optimal value 
of multiple runs is taken as the experimental result. 
In order to compare the performance of the various 
algorithms, the stopping criterion is set at same, the 
population size is 50, and the maximum number of 
iterations is 500. When solving with BSO, it is divided 
into five categories, and Pm = 0.1, Pa = 0.5, Pb = 0.5, 
Pc = 0.3, and Pd = 0.4 are selected. For PSO, take C1 = 2, 
C2 = 2 and W starts at 1 and decreases until reaching 0 
at the end of the run. Mutation rate = 0.7 and crossover 
rate = 0.3 are used to get the best results for GA.

In order to compare the dynamic performance of the 
three swarm intelligence algorithms, the convergence 
characteristic curves of the three algorithms are given 
in Fig. 3. It can be seen that PSO and GA are constantly 
close to the optimal value in the early stage of searching, 
and the fitness value decreases rapidly in the first 80 
generations. At this stage, PSO and GA mainly focus 
on finding feasible solutions to the problem. However, 
as the search goes on, the fitness value decreases slowly, 
and finally falls into local optimum and the result 
cannot be further optimized. For the BSO algorithm, 
the individuals keep approaching the minimum value 
after the search starts, and then there is a platform 
period when the individuals temporarily stagnate. When 
the individuals evolved to around 240 generations, the 
step size is sharply reduced by a relatively large value, 
causing the individuals to be reactivated and approached 
to a better position. The reason is that the individuals 
may have been close to an optimal position before 
240 generations, but the excessive step size makes 
the individuals swing around to the optimal position. 
Therefore, when the step size decreases, the individuals 
slowly start to move toward the optimal position, and 
the result is further optimized. Thus, the adjustment of 
the step size plays a very important role in the effect 
of BSO algorithm, and the current step size strategy 
can make the BSO algorithm fully search for the global 
optimum.

Based on the experimental results given in Table 6, 
we can obtain the three swarm intelligence algorithms 
of BSO, PSO and GA in order to find the optimal fitness 
value of the low-carbon generation expansion planning 
model within a small number of iterations and the 
specified accuracy requirements. However, compared 
with PSO and GA, the BSO algorithm searches for  
the minimum economic cost. Therefore, the BSO 
algorithm performs best among the three algorithms 
to solve the low-carbon generation expansion planning 
problem.

Fig. 3. Convergence characteristics of various optimization 
algorithms.



Huang Y., et al.1178

competitive under the goal of minimizing the economic 
cost of the system, so its installed capacity is relatively 
small. At the same time, renewable energy power 
generation technology is still immature, so the system 
still needs to build some coal-fired B units with reliable 
operation and relatively low carbon intensity.

The discounted values of various costs during the 
planning period are shown in Table 7.

As can be seen from Table 7, in the initial stage 
of planning the system allows for a high carbon cap, 
and the renewable energy quota is relatively low. 
Therefore, the system can profit by selling carbon 
emission permits, and the green certificate transaction 
cost is small. With the gradual reduction of the carbon 
cap, since 2022 the system’s carbon emissions have 
exceeded the allowable carbon emissions for that year, 
so it is necessary to purchase carbon emission permits 
to meet the carbon emissions limit. During the planning 
period, the proportion of renewable energy generation 
in the system has been lower than the government’s 
prescribed ratio, so the system needs to purchase green 
certificates in order to meet the renewable energy 
quota. With the increase of green certificate price  
and renewable energy quota, the green certificate 
transaction cost to be paid by the system is increasing 
year by year. At the end of 2021, a large number of 
generator sets have been built, which can basically meet 
the demand for electricity consumption and maximum 
load in the system. Therefore, the system only 
invests 60MW of photovoltaic plants in 2022, and the 
investment cost is small, resulting in a small total cost 
in that year. In the following years, the operating cost, 
carbon trading cost and green certificate transaction 
cost are increasing year by year, resulting in an increase 
in the total cost.

Discussion

Comparative Analysis

In order to analyze the validity of the low-carbon 
generation expansion planning model proposed in this 
paper, the following four scenarios are set:

Scenario 1 (basic scenario): Carbon trading cost, 
green certificate transaction cost, carbon cap constraint 
and renewable energy quota constraint are not 
considered.

Scenario 2 (carbon trading scenario): Introduce the 
carbon trading mechanism into the basic scenario.

Results and Discussion

Results

The proposed low-carbon generation expansion 
planning model considers the carbon trading mechanism 
and the green certificate transaction mechanism. This 
paper uses the BSO algorithm to solve the model, and 
the accumulated installed capacity of the new units in 
the planning period is shown in Fig. 4.

It can be seen that under the optimal planning 
scheme, the newly installed capacity of coal-fired unit 
A, coal-fired unit B, hydropower unit, wind turbine 
and photovoltaic plant during the planning period are 
300MW, 3600MW, 400MW, 500MW and 120MW, 
respectively. In the initial stage of planning, in order to 
ensure the power demand of the system, coal-fired unit 
A and coal-fired unit B are built under the condition of 
meeting carbon emission constraints. In the low-carbon 
situation, coal-fired unit A is gradually being phased out 
in planning due to its large carbon intensity. Meanwhile, 
in order to reduce the carbon trading cost and green 
certificate transaction cost, hydropower units with low 
operating cost and large annual utilization hours are 
prioritized. Due to the high operating cost and low 
annual utilization hours, the initial construction of wind 
turbines and photovoltaic plants is not very active. 

With the strengthening of carbon cap constraint and 
renewable energy quota constraint, the system begins to 
build wind turbines and photovoltaic plants. Considering 
the high operating cost, the photovoltaic plant is not 

Table 6. Comparison of optimization algorithms.

Algorithm Coal-fired A
(MW)

Coal-fired B
(MW)

Hydro
(MW)

Wind
(MW)

PV
(MW)

Total cost 
(million RMB)

BSO 300 3600 400 500 120 95798.42 

PSO 900 3000 600 200 180 96314.73

GA 900 3000 600 300 120 96839.29

Fig. 4. Accumulated installed capacity of the new units during 
the planning period.
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Scenario 3 (green certificate transaction scenario): 
Introduce the green certificate transaction mechanism 
into the basic scenario.

Scenario 4 (comprehensive scenario): The carbon 
trading mechanism and the green certificate transaction 
mechanism are introduced into the basic scenario, 
namely the low-carbon generation expansion planning 
model proposed in this paper.

The installed capacity of the four scenarios in the 
final year of planning are shown in Fig. 5. The key 
indicators of the four scenarios (converted to present 
value) are compared in Table 8.

It can be seen from Fig. 5 that in the four scenarios, 
the installed proportion of renewable energy generator 
sets in the system is 8.16%, 15.32%, 19.75% and 20.73%, 
respectively. The results show that the introduction 
of carbon trading mechanism and green certificate 
transaction mechanism can promote the development 
of renewable energy, and the promotion effect of the 
green certificate transaction mechanism is better than 
that of the carbon-trading mechanism. When the two 
mechanisms are introduced together, the installed 
proportion of renewable energy generator sets reached 
the highest, increasing by 12.57% over the basic 
scenario.

As can be seen from Table 8, the investment cost 
of renewable energy generator sets is higher than that 
of coal-fired units, and the operating cost is relatively 
low. Therefore, as the installed proportion of renewable 
energy generator sets increases, the investment cost of 
the system during the planning period gradually rises, 
while the operating cost decreases. The investment cost 
in the comprehensive scenario increased by 13.67% 
compared with the basic scenario, and the operating 
cost decreased by 8.13%. When both the carbon 
trading mechanism and the green certificate transaction 
mechanism are introduced, they can play a mutually 
reinforcing role. The system’s carbon trading cost and 
green certificate transaction cost are lower than when a 
single mechanism is introduced. 

In addition, in the four scenarios, the total carbon 
emissions of the system are: 33.93 million tons,  

Table 7. Costs during the planning period of the system.

Year Total cost 
(million RMB)

Investment cost 
(million RMB)

Operating cost 
(million RMB)

Carbon trading cost 
(million RMB)

Green certificate transaction 
cost (million RMB)

2018 13818.58 7230.73 6616.96 -29.11 36.43 

2019 10652.86 3016.11 7664.77 -28.01 50.68 

2020 8614.11 939.68 7688.89 -14.45 53.08 

2021 11745.40 3016.11 8736.70 -7.40 70.35 

2022 9226.90 462.71 8751.11 13.08 75.98 

2023 13150.69 3319.31 9803.39 28.00 105.06 

2024 14236.16 3319.31 10855.67 61.18 129.52 

2025 14353.73 2379.63 11883.83 90.27 160.13 

Fig 5. Installed capacity of the four scenarios in the final year of 
planning.

Table 8. Key indicators of the four scenarios.

Type Total cost 
(million RMB)

Investment cost 
(million RMB)

Operating cost 
(million RMB)

Carbon trading 
cost 

(million RMB)

Green certificate 
transaction cost 
(million RMB)

Total carbon emis-
sion (million tonnes)

Scenario 1 99211.71 20835.14 78376.57 0.00 0.00 33.94 

Scenario 2 98605.66 22577.59 75706.14 321.93 0.00 32.32 

Scenario 3 96577.47 23010.20 73567.27 0.00 799.87 31.26 

Scenario 4 95798.42 23683.57 72001.30 113.56 681.24 30.69 
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32.32 million tons, 31.26 million tons and 30.69 million 
tons, respectively. It can be seen that both the carbon 
trading mechanism and the green certificate trading 
mechanism can reduce the system’s carbon emissions 
to some extent, and the optimization effect of the green 
certificate transaction mechanism is better than that of 
the carbon trading mechanism. When the carbon trading 
mechanism and green certificate transaction mechanism 
are jointly introduced, the total carbon emissions of the 
system reached a minimum that is 3.26 million tons 
lower than the basic scenario.

Sensitivity Analysis

1. Impact of different carbon prices on planning results
On the basis of the benchmark scheme, the carbon 

trading price is reduced by 30% and increased by 30%, 
respectively, to form a low carbon price scheme, a 
benchmark carbon price scheme and a high carbon price 
scheme. The difference in carbon trading prices leads 
to different generation expansion planning results. The 
accumulated installed capacity of the newly built units 
under the three schemes is shown in Fig. 6.

Fig. 6 shows that the change in the carbon price 
has a certain impact on the construction of units. In 
the low carbon price scheme, coal-fired units are built 
with priority due to their low operating cost, and their 
installed capacity accounts for 84.68% of the total 
installed capacity. Due to the intermittent, uncertain 
and costly investment of wind turbines and photovoltaic 
plants, their installed capacity is reduced. Later in  
the planning period, as the carbon emission limit is 
reduced, the system cannot guarantee that the carbon 
emissions are below the prescribed limit. However, 
at this time, the carbon price is relatively low, so the 
system chooses to purchase carbon emission permits 
instead of increasing the installed capacity of renewable 
energy units.

Under the high carbon price scheme, once the 
total carbon emissions of the system exceed the limit, 
the system will spend a high cost on the purchase 

of carbon emission permits. In this case, the system 
chooses to build wind turbines, hydropower units and 
photovoltaic plants. The construction of these three 
types of renewable energy units has effectively reduced 
the system’s carbon emissions. At this time, the installed 
capacity of coal-fired units has fallen to 72.05% of 
the total installed capacity. As the carbon price rises, 
the system’s carbon emissions continue to decrease, 
and the carbon emissions under the high carbon price 
scheme are reduced by 4.31 million tons compared to 
the low carbon price scheme. So, through increasing 
the carbon price, the development of renewable energy 
power generation can be promoted, thereby reducing the 
carbon emissions in the system.
2. Impact of different carbon caps on planning results.

On the basis of the benchmark scheme, the 
carbon cap is reduced by 30% and increased by 30%, 
respectively. Three generation expansion planning 
schemes with different carbon emission constraints are 
obtained. The accumulated installed capacity of the 
newly built units under the three schemes is shown in 
Fig. 7.

Similar to adjusting the carbon price, changing 
the carbon cap also has a significant impact on the 
planning results. When the carbon cap is increased by 
30%, the carbon trading cost saved by the renewable 
energy generator sets is not enough to make up for 
the investment cost of the new renewable energy 
units. Therefore, the system chooses to prioritize the 
construction of coal-fired units. Compared with the 
benchmark carbon cap scheme, the newly installed 
capacity of hydropower units, wind turbines and 
photovoltaic plants has declined. As carbon emission 
limits increase, the system is increasingly investing in 
renewable energy generator sets to reduce the carbon 
trading cost. 

When the carbon cap is reduced by 30%, the system 
builds a new hydropower unit and three photovoltaic 
plants to replace the coal-fired unit A. Therefore, with 
the strengthen of carbon cap constraint, the installed 
proportion of coal-fired units will gradually decrease, 

Fig. 6. Accumulated installed capacity of the new units under 
different carbon prices.

Fig. 7. Accumulated installed capacity of the new units under 
different carbon caps.
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but hydropower units, wind turbines and photovoltaic 
plants will gradually be built due to their zero-emission 
characteristics. In addition, the carbon emissions under 
the low carbon cap scheme are reduced by 5.94 million 
tons compared to the high carbon cap scheme. Therefore, 
by reducing carbon cap, renewable energy generation 
can be promoted, thereby reducing the carbon emissions 
of the system.
3. Impact of different green certificate prices on 
planning results.

On the basis of the benchmark scheme, the green 
certificate price is reduced by 30% and increased 
by 30%, respectively, to form three schemes. The 
accumulated installed capacity of the newly built units 
under the three schemes is shown in Fig. 8.

Fig. 8 shows that under the low green certificate 
price scheme, the government has a low renewable 
energy quota in the early stage of planning period. The 
system can meet the quotas specified by purchasing a 
small amount of green certificates. With the increase 
of renewable energy quotas, the number of green 
certificates that the system needs to purchase has also 
increased year by year. However, the green certificate 
price is low, the system chooses to buy green certificates 
instead of investing in renewable energy generator sets. 
At this time, the installed capacity of renewable energy 
generator sets only accounts for 15.32% of the total 
installed capacity. 

With the increase in the price of green certificates, 
the system gradually begins to build renewable energy 
units. The installed capacity of renewable energy units 
in the high green certificate price scheme further 
increased to 28.88%. In addition, the carbon emissions 
under the high certificate price scheme have been 
reduced by 5.94 million tons compared to the low price 
scheme. Therefore, by increasing the green certificate 
price, the development of renewable energy power 
generation can be promoted, and the carbon emissions 
of the system can be further reduced.
4. Impact of different renewable energy quotas on 
planning results.

On the basis of the benchmark scheme, the renewable 
energy quota is reduced by 30% and increased by 30%, 
respectively, to form three different schemes. The 
accumulated installed capacity of the newly built units 
under the three schemes is shown in Fig. 9.

Fig. 9 shows that under the low renewable energy 
quota scheme, the government has a low renewable 
energy quota in the early stage of planning, and the 
system can complete the quota indicator by purchasing 
a small amount of green certificates. Therefore, it is 
preferred to invest in coal-fired units with low operating 
cost, while the number of newly built renewable energy 
generator sets is small. In the later stage of planning, 
with the increase of renewable energy quota, the green 
certificate cost paid by the system has also increased 
year by year. Unlike the benchmark quota scheme, 
the system chooses to purchase green certificates to 
guarantee the renewable energy quota target instead of 
investing in renewable energy units. This is because 
the cost of purchasing green certificates for the system 
is lower than the cost of building renewable energy 
generator sets. 

Under the high quota scheme, the system can save 
many green certificate transaction costs by renewable 
energy power generation. Therefore, the system has 
invested a large number of hydropower units, wind 
turbines and photovoltaic plants in the initial planning 
period. The generating capacity of these three types of 
units guarantees the renewable energy quota targets. In 
addition, with the increase in renewable energy quota, 
the total carbon emissions under the high quota scheme 
is reduced by 2.69 million tons compared to the low 
quota scheme. Therefore, increasing the renewable 
energy quota can promote the development of renewable 
energy, thereby reducing the system’s carbon emissions.

Conclusions

With the increasingly serious environmental 
problems, the traditional generation expansion 

Fig. 8. Accumulated installed capacity of the new units under 
different green certificate prices.

Fig. 9. Accumulated installed capacity of the new units under 
different renewable energy quotas.
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planning can no longer meet the requirements of 
social development, and gradually shift to a low-
carbon direction. This paper introduces the carbon 
trading mechanism and the green certificate transaction 
mechanism into the traditional generation expansion 
planning, and establishes a low-carbon generation 
expansion planning model with the minimum economic 
cost as the objective function. Then, fuzzy chance 
constraints are used to transform the load forecasting, 
wind power output and photovoltaic power output of 
these uncertain factors into their clear equivalence 
classes. Finally, this paper uses the BSO algorithm 
to solve the model, and the feasibility of the model is 
verified by a case. In this case, the basic scenario, 
carbon trading scenario, green certificate transaction 
scenario and comprehensive scenario are compared. 
And the impacts of different carbon prices, carbon caps, 
green certificate prices and renewable energy quotas on 
the planning results are analyzed. Our main conclusions 
are as follows:

(1) Both the carbon trading mechanism and the 
green certificate transaction mechanism can promote the 
development of renewable energy, and reduce the carbon 
emissions in the power sector. 

(2) The optimization effect of the green certificate 
transaction mechanism is better than that of the 
carbon trading mechanism. When both mechanisms 
are introduced, the system has the highest installed 
proportion of renewable energy and the lowest total 
carbon emissions. 

(3) With the increase of carbon price or green 
certificate price, and the strengthening of carbon cap 
constraint or renewable energy quota constraint, the 
proportion of renewable energy units is gradually 
increasing, and the total carbon emissions of the system 
are gradually reduced. 

These conclusions have guiding significance for 
implementing the carbon trading and green certificate 
transaction mechanisms in the power sector, and 
provide a reference for the formulation of carbon price, 
carbon cap, green certificate price and renewable energy 
quota, thus promoting the low-carbon development of 
the power industry.
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